Do you want to publish a course? Click here

Radial profiles of lensed $z sim 1$ galaxies on sub-kiloparsec scales

448   0   0.0 ( 0 )
 Added by David Nagy Mr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the spatially resolved physical properties of the Cosmic Snake arc in MACS J1206.2-0847 and the arc in Abell 0521 (A521). These are two strongly lensed galaxies at redshifts $z=1.036$ and $z=1.044$. We used observations of the Hubble Space Telescope (HST) and the Atacama Large Millimeter/submillimeter Array (ALMA). The former gives access to the star formation rate (SFR) and stellar mass ($M_star$), and the latter to the H$_2$ molecular gas mass ($M_{mathrm{mol}}$). HST and ALMA observations have similar angular resolutions of $0.15^{prime prime}-0.2^{prime prime}$, which with the help of strong gravitational lensing enable us to reach spatial resolutions down to $sim 30,mathrm{pc}$ and $sim 100,mathrm{pc}$ in these two galaxies, respectively. These resolutions are close to the resolution of observations of nearby galaxies. We study the radial profiles of SFR, $M_star$, and $M_{mathrm{mol}}$ surface densities of these high-redshift galaxies and compare the corresponding exponential scale lengths with those of local galaxies. We find that the scale lengths in the Cosmic Snake are about $0.5,mathrm{kpc}-1.5,mathrm{kpc}$, and they are 3 to 10 times larger in A521. This is a significant difference knowing that the two galaxies have comparable integrated properties. These high-redshift scale lengths are nevertheless comparable to those of local galaxies, which cover a wide distribution. The particularity of our high-redshift radial profiles is the normalisation of the $M_{mathrm{mol}}$ surface density profiles ($Sigma M_{mathrm{mol}}$), which are offset by up to a factor of 20 with respect to the profiles of $z=0$ counterparts. The SFR surface density profiles are also offset by the same factor as $Sigma M_{mathrm{mol}}$, as expected from the Kennicutt-Schmidt law.



rate research

Read More

The existence of a spatially resolved Star-Forming Main Sequence (rSFMS) and a spatially resolved Mass-Metallicity Relation (rMZR) is now well established for local galaxies. Moreover, gradients with metallicity decreasing with radius seem to be common in local disc galaxies. These observations suggest that galaxy formation is a self-regulating process, and provide constraints for galaxy evolution models. Studying the evolution of these relations at higher redshifts is still however very challenging. In this paper, we analyse three gravitationally lensed galaxies at z = 0.6, 0.7 and 1, observed with MUSE and SINFONI. These galaxies are highly magnified by galaxy clusters, which allow us to observe resolved scaling relations and metallicity gradients on physical scales of a couple of hundred parsecs, comparable to studies of local galaxies. We confirm that the rSFMS is already in place at these redshifts on sub-kpc scales, and establish, for the first time, the existence of the rMZR at higher redshifts. We develop a forward-modelling approach to fit 2D metallicity gradients of multiply imaged lensed galaxies in the image plane, and derive gradients of -0.027+/-0.003, -0.019+/-0.003 and -0.039+/-0.060 dex/kpc. Despite the fact that these are clumpy galaxies, typical of high redshift discs, the metallicity variations in the galaxies are well described by global linear gradients, and we do not see any difference in metallicity associated with the star-forming clumps.
462 - C. Yang 2019
Using ALMA, we report high angular-resolution observations of the redshift z=3.63 galaxy, G09v1.97, one of the most luminous strongly lensed galaxies discovered by the H-ATLAS survey. We present 02-04 resolution images of the rest-frame 188 and 419$mu$m dust continuum and the CO(6-5), H2O(211-202) and J=2 H2O+ line emission. We also report the detection of H$_2^{18}$O in this source. The dust continuum and molecular gas emission are resolved into a nearly complete ~15 diameter Einstein ring plus a weaker image in the center, which is caused by a special dual deflector lensing configuration. The observed line profiles of the CO, H2O and H2O+ lines are strikingly similar. In the source plane, we reconstruct the dust continuum images and the spectral cubes of the line emission at sub-kpc scales. The reconstructed dust emission in the source plane is dominated by a compact disk with an effective radius of 0.7kpc plus an overlapping extended disk with a radius twice as large. While the average magnification for the dust continuum is $mu$~10-11, the magnification of the line emission varies 5 to 22 across different velocity components. The emission lines have similar spatial and kinematic distributions. The molecular gas and dust content reveal that G09v1.97 is a gas-rich major merger in its pre-coalescence phase. Both of the merging companions are intrinsically ULIRGs with LIR reaching $gtrsim 4times10^{12}L_odot$, and the total LIR of G09v1.97 is $1.4times10^{13}L_odot$. The approaching southern galaxy shows no obvious kinematic structure with a semi-major half-light radius a_s=0.4kpc, while the receding galaxy resembles an a_s=1.2kpc rotating disk. The two galaxies are separated by a projected distance of 1.3kpc, bridged by weak line emission that is co-spatially located with the cold-dust-emission peak, suggesting a large amount of cold ISM in the interacting region. (abridged)
We study the propagation of star formation based on the investigation of the separation of young star clusters from HII regions nearest to them. The relation between the separation and U-B colour index (or age) of a star cluster was found. The average age of star clusters increases with the separation as the 1.0-1.2 power in the separation range from 40 to 200 pc and as the 0.4-0.9 power in the range of 100-500 pc in the galaxies with symmetric morphology. The galaxies with distorted asymmetric disc structure show more complex and steeper (power >1.2 at separations from 40 to 500 pc) dependence between the age and the separation. Our results confirm the findings of previous studies on the dominant role of turbulence in propagation of the star formation process on spatial scales up to 500 pc and on time scales up to 300 Myr. On a smaller scale (=<100 pc), other physical processes, such as stellar winds and supernova explosions, play an important role along with turbulence. On the scale of stellar associations (100-200 pc and smaller), the velocity of star formation propagation is almost constant and it has a typical value of a few km/s.
81 - M. Perna , M. Curti , G. Cresci 2018
Gravitationally lensed systems allow a detailed view of galaxies at high redshift. High spatial- and spectral-resolution measurements of arc-like structures can offer unique constraints on the physical and dynamical properties of high-z systems. We present near-infrared spectra centred on the gravitational arcs of six known z ~ 2 lensed star-forming galaxies of stellar masses of 10^9-10^11 Msun and star formation rate (SFR) in the range between 10 and 400 Msun/yr. Ground layer adaptive optics (AO)-assisted observations are obtained at the Large Binocular Telescope (LBT) with the LUCI spectrographs during the commissioning of the ARGOS facility. We used MOS masks with curved slits to follow the extended arched structures and study the diagnostic emission lines. Combining spatially resolved kinematic properties across the arc-like morphologies, emission line diagnostics and archival information, we distinguish between merging and rotationally supported systems, and reveal the possible presence of ejected gas. For galaxies that have evidence for outflows, we derive outflow energetics and mass-loading factors compatible with those observed for stellar winds in local and high-z galaxies. We also use flux ratio diagnostics to derive gas-phase metallicities. The low signal-to-noise ratio in the faint H$beta$ and nitrogen lines allows us to derive an upper limit of ~ 0.15 dex for the spatial variations in metallicity along the slit for the lensed galaxy J1038. Analysed near-infrared spectra presented here represent the first scientific demonstration of performing AO-assisted multi-object spectroscopy with narrow curved-shape slits. The increased angular and spectral resolution, combined with the binocular operation mode with the 8.4-m-wide eyes of LBT, will allow the characterisation of kinematic and chemical properties of a large sample of galaxies at high-z in the near future.
We present spatially-resolved imaging obtained with the Australia Telescope Compact Array (ATCA) of three CO lines in two high-redshift gravitationally lensed dusty star-forming galaxies, discovered by the South Pole Telescope. Strong lensing allows us to probe the structure and dynamics of the molecular gas in these two objects, at z=2.78 and z=5.66, with effective source-plane resolution of less than 1kpc. We model the lensed emission from multiple CO transitions and the dust continuum in a consistent manner, finding that the cold molecular gas as traced by low-J CO always has a larger half-light radius than the 870um dust continuum emission. This size difference leads to up to 50% differences in the magnification factor for the cold gas compared to dust. In the z=2.78 galaxy, these CO observations confirm that the background source is undergoing a major merger, while the velocity field of the other source is more complex. We use the ATCA CO observations and comparable resolution Atacama Large Millimeter/submillimeter Array dust continuum imaging of the same objects to constrain the CO-H_2 conversion factor with three different procedures, finding good agreement between the methods and values consistent with those found for rapidly star-forming systems. We discuss these galaxies in the context of the star formation - gas mass surface density relation, noting that the change in emitting area with observed CO transition must be accounted for when comparing high-redshift galaxies to their lower redshift counterparts.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا