No Arabic abstract
Understanding whether dissipation in an open quantum system is truly quantum is a question of both fundamental and practical interest. We consider a general model of n qubits subject to correlated Markovian dephasing, and present a sufficient condition for when bath-induced dissipation can generate system entanglement and hence must be considered quantum. Surprisingly, we find that the presence or absence of time-reversal symmetry (TRS) plays a crucial role: broken TRS is required for dissipative entanglement generation. Further, simply having non-zero bath susceptibilities is not enough for the dissipation to be quantum. Our work also present an explicit experimental protocol for identifying truly quantum dephasing dissipation, and lays the groundwork for studying more complex dissipative systems and finding optimal noise mitigating strategies.
We report here the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a dissipation driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.
Controllable systems relying on quantum behavior to simulate distinctly quantum models so far rely on increasingly challenging classical computing to verify their results. We develop a general protocol for confirming that an arbitrary many-body system, such as a quantum simulator, can entangle distant objects. The protocol verifies that distant qubits interacting separately with the system can become mutually entangled, and therefore serves as a local test that excitations of the system can create non-local quantum correlations. We derive an inequality analogous to Bells inequality which can only be violated through entanglement between distant sites of the many-body system. Although our protocol is applicable to general many-body systems, it requires finding system-dependent local operations to violate the inequality. A specific example in quantum magnetism is presented.
We study the influence of a chaotic environment in the evolution of an open quantum system. We show that there is an inverse relation between chaos and non-Markovianity. In particular, we remark on the deep relation of the short time non-Markovian behavior with the revivals of the average fidelity amplitude-a fundamental quantity used to measure sensitivity to perturbations and to identify quantum chaos. The long time behavior is established as a finite size effect which vanishes for large enough environments.
We develop a notion of dephasing under the action of a quantum Markov semigroup in terms of convergence of operators to a block-diagonal form determined by irreducible invariant subspaces. If the latter are all one-dimensional, we say the dephasing is maximal. With this definition, we show that a key necessary requirement on the Lindblad generator is bistochasticity, and focus on characterizing whether a maximally dephasing evolution may be described in terms of a unitary dilation with only classical noise, as opposed to a genuine non-commutative Hudson-Parthasarathy dilation. To this end, we make use of a seminal result of K{u}mmerer and Maassen on the class of commutative dilations of quantum Markov semigroups. In particular, we introduce an intrinsic quantity constructed from the generator, which vanishes if and only if the latter admits a self-adjoint representation and which quantifies the degree of obstruction to having a classical diffusive noise model.
Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant perturbation, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently [N. Gronbech-Jensen and M. Cirillo, Phys. Rev. Lett. 95, 067001 (2005)] that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effect. First, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency (multiphoton processes), the classical effect also exists when the system is excited at the overtones. Second, the shape of the resonance is, in the classical case, characteristically asymmetric; while quantum resonances are described by symmetric Lorentzians. Third, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow to confidently distinguish the bona fide Rabi oscillations from their classical Doppelganger.