Do you want to publish a course? Click here

Characterizing the existence of a Borel complete expansion

89   0   0.0 ( 0 )
 Added by Michael C Laskowski
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We develop general machinery to cast the class of potential canonical Scott sentences of an infinitary sentence $Phi$ as a class of structures in a related language. From this, we show that $Phi$ has a Borel complete expansion if and only if $S_infty$ divides $Aut(M)$ for some countable model $Mmodels Phi$. Using this, we prove that for theories $T_h$ asserting that ${E_n}$ is a countable family of cross cutting equivalence relations with $h(n)$ classes, if $h(n)$ is uniformly bounded then $T_h$ is not Borel complete, providing a converse to Theorem~2.1 of cite{LU}.



rate research

Read More

139 - Dominique Lecomte 2009
We study the extension of the Kechris-Solecki-Todorcevic dichotomy on analytic graphs to dimensions higher than 2. We prove that the extension is possible in any dimension, finite or infinite. The original proof works in the case of the finite dimension. We first prove that the natural extension does not work in the case of the infinite dimension, for the notion of continuous homomorphism used in the original theorem. Then we solve the problem in the case of the infinite dimension. Finally, we prove that the natural extension works in the case of the infinite dimension, but for the notion of Baire-measurable homomorphism.
103 - Olivier Finkel 2020
We prove that, for any natural number n $ge$ 1, we can find a finite alphabet $Sigma$ and a finitary language L over $Sigma$ accepted by a one-counter automaton, such that the $omega$-power L $infty$ := {w 0 w 1. .. $in$ $Sigma$ $omega$ | $forall$i $in$ $omega$ w i $in$ L} is $Pi$ 0 n-complete. We prove a similar result for the class $Sigma$ 0 n .
We give a completely constructive solution to Tarskis circle squaring problem. More generally, we prove a Borel version of an equidecomposition theorem due to Laczkovich. If $k geq 1$ and $A, B subseteq mathbb{R}^k$ are bounded Borel sets with the same positive Lebesgue measure whose boundaries have upper Minkowski dimension less than $k$, then $A$ and $B$ are equidecomposable by translations using Borel pieces. This answers a question of Wagon. Our proof uses ideas from the study of flows in graphs, and a recent result of Gao, Jackson, Krohne, and Seward on special types of witnesses to the hyperfiniteness of free Borel actions of $mathbb{Z}^d$.
100 - Dominique Lecomte 2017
We provide dichotomy results characterizing when two disjoint analytic binary relations can be separated by a countable union of ${bfSigma}^0_1 !times! {bfSigma}^0_xi$ sets, or by a ${bfPi}^0_1 !times! {bfPi}^0_xi$ set.
102 - Dominique Lecomte 2018
We study the class of Borel equivalence relations under continuous reducibility. In particular , we characterize when a Borel equivalence relation with countable equivalence classes is $Sigma$ 0 $xi$ (or $Pi$ 0 $xi$). We characterize when all the equivalence classes of such a relation are $Sigma$ 0 $xi$ (or $Pi$ 0 $xi$). We prove analogous results for the Borel equivalence relations with countably many equivalence classes. We also completely solve these two problems for the first two ranks. In order to do this, we prove some extensions of the Louveau-Saint Raymond theorem which itself generalized the Hurewicz theorem characterizing when a Borel subset of a Polish space is G $delta$ .
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا