Localization and flexibilization in symplectic geometry


Abstract in English

We introduce the critical Weinstein category - the result of stabilizing the category of Weinstein sectors and inverting subcritical morphisms - and construct localizing `P-flexibilization endofunctors indexed by collections $P$ of Lagrangian disks in the stabilization of a point $T^*D^0$. Like the classical localization of topological spaces studied by Quillen, Sullivan, and others, these functors are homotopy-invariant and localizing on algebraic invariants like the Fukaya category. Furthermore, these functors generalize the `flexibilization operation introduced by Cieliebak-Eliashberg and Murphy and the `homologous recombination construction of Abouzaid-Seidel. In particular, we give an h-principle-free proof that flexibilization is idempotent and independent of presentation, up to subcriticals and stabilization. In fact, we show that $P$-flexibilization is a multiplicative localization of the critical Weinstein category, and hence gives rise to a new way of constructing commutative algebra objects from symplectic geometry.

Download