Do you want to publish a course? Click here

Chiral Cavity Quantum Electrodynamics

80   0   0.0 ( 0 )
 Added by Margaret Panetta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cavity quantum electrodynamics, which explores the granularity of light by coupling a resonator to a nonlinear emitter, has played a foundational role in the development of modern quantum information science and technology. In parallel, the field of condensed matter physics has been revolutionized by the discovery of underlying topological robustness in the face of disorder, often arising from the breaking of time-reversal symmetry, as in the case of the quantum Hall effect. In this work, we explore for the first time cavity quantum electrodynamics of a transmon qubit in the topological vacuum of a Harper-Hofstadter topological lattice. To achieve this, we assemble a square lattice of niobium superconducting resonators and break time-reversal symmetry by introducing ferrimagnets before coupling the system to a single transmon qubit. We spectroscopically resolve the individual bulk and edge modes of this lattice, detect vacuum-stimulated Rabi oscillations between the excited transmon and each mode, and thereby measure the synthetic-vacuum-induced Lamb shift of the transmon. Finally, we demonstrate the ability to employ the transmon to count individual photons within each mode of the topological band structure. This work opens the field of chiral quantum optics experiment, suggesting new routes to topological many-body physics and offering unique approaches to backscatter-resilient quantum communication.



rate research

Read More

Quantum light-matter systems at strong coupling are notoriously challenging to analyze due to the need to include states with many excitations in every coupled mode. We propose a nonperturbative approach to analyze light-matter correlations at all interaction strengths. The key element of our approach is a unitary transformation that achieves asymptotic decoupling of light and matter degrees of freedom in the limit where light-matter interaction becomes the dominant energy scale. In the transformed frame, truncation of the matter/photon Hilbert space is increasingly well-justified at larger coupling, enabling one to systematically derive low-energy effective models, such as tight-binding Hamiltonians. We demonstrate the versatility of our approach by applying it to concrete models relevant to electrons in crystal potential and electric dipoles interacting with a cavity mode. A generalization to the case of spatially varying electromagnetic modes is also discussed.
We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a non-resonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states, and that the atomic nonlinearity gives rise to highly non-trivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.
Cavity quantum electrodynamics (CQED) investigates the interaction between light confined in a resonator and particles, such as atoms. In recent years, CQED experiments have reached the optical domain resulting in many interesting applications in the realm of quantum information processing. For many of these application it is necessary to overcome limitations imposed by photon loss. In this context whispering-gallery mode (WGM) resonators have obtained significant interest. Besides their small mode volume and their ultra high quality, they also exhibit favorable polarization properties that give rise to chiral light--matter interaction. In this chapter, we will discuss the origin and the consequences of these chiral features and we review recent achievements in this area.
We present cavity QED experiments with an Er:YSO crystal magnetically coupled to a 3D cylindrical sapphire loaded copper resonator. Such waveguide cavities are promising for the realization of a superconducting quantum processor. Here, we demonstrate the coherent integration of a rare-earth spin ensemble with the 3D architecture. The collective coupling strength of the Er$^{3+}$ spins to the 3D cavity is 21 MHz. The cylindrical sapphire loaded resonator allowed us to explore the anisotropic collective coupling between the rare-earth doped crystal and the cavity. This work shows the potential of spin doped solids in 3D quantum circuits for application as microwave quantum memories as well as for prospective microwave to optical interfaces.
We consider a superconducting microwave cavity capacitively coupled to both a quantum conductor and its electronic reservoirs. We analyze in details how the measurements of the cavity microwave field, which are related to the electronic charge susceptibility, can be used to extract information on the transport properties of the quantum conductor. We show that the asymmetry of the capacitive couplings between the electronic reservoirs and the cavity plays a crucial role in relating optical measurements to transport properties. For asymmetric capacitive couplings, photonic measurements can be used to probe the finite low frequency admittance of the quantum conductor, the real part of which being related to the differential conductance. In particular, when the quantum dot is far from resonance, the charge susceptibility is directly proportional to the admittance for a large range of frequencies and voltages. However, when the quantum conductor is near a resonance, such a relation generally holds only at low frequency and for equal tunnel coupling or low voltage. Beyond this low-energy near equilibrium regime, the charge susceptibility and thus the optical transmission offers new insights on the quantum conductors since the optical observables are not directly connected to transport quantities. For symmetric lead capacitive couplings, we show that the optical measurements can be used to reveal the Korringa-Shiba relation, connecting the reactive to the dissipative part of the susceptibility, at low frequency and low bias.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا