Do you want to publish a course? Click here

Maximum Matching sans Maximal Matching: A New Approach for Finding Maximum Matchings in the Data Stream Model

111   0   0.0 ( 0 )
 Added by Moran Feldman
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The problem of finding a maximum size matching in a graph (known as the maximum matching problem) is one of the most classical problems in computer science. Despite a significant body of work dedicated to the study of this problem in the data stream model, the state-of-the-art single-pass semi-streaming algorithm for it is still a simple greedy algorithm that computes a maximal matching, and this way obtains 1/2-approximation. Some previous works described two/three-pass algorithms that improve over this approximation ratio by using their second and third passes to improve the above mentioned maximal matching. One contribution of this paper continuous this line of work by presenting new three-pass semi-streaming algorithms that work along these lines and obtain improved approximation ratios of 0.6111 and 0.5694 for triangle-free and general graphs, respectively. Unfortunately, a recent work (Konrad and Naidu, 2021) shows that the strategy of constructing a maximal matching in the first pass and then improving it in further passes has limitations. Additionally, this technique is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a better than 1/2-approximation. Therefore, it is interesting to come up with algorithms that do something else with their first pass (we term such algorithms non-maximal-matching-first algorithms). No such algorithms are currently known (to the best of our knowledge), and the main contribution of this paper is describing such algorithms that obtain approximation ratios of 0.5384 and 0.5555 in two and three passes, respectively, for general graphs (the result for three passes improves over the previous state-of-the-art, but is worse than the result of this paper mentioned in the previous paragraph for general graphs).



rate research

Read More

We study the problem of matching agents who arrive at a marketplace over time and leave after d time periods. Agents can only be matched while they are present in the marketplace. Each pair of agents can yield a different match value, and the planners goal is to maximize the total value over a finite time horizon. First we study the case in which vertices arrive in an adversarial order. We provide a randomized 0.25-competitive algorithm building on a result by Feldman et al. (2009) and Lehman et al. (2006). We extend the model to the case in which departure times are drawn independently from a distribution with non-decreasing hazard rate, for which we establish a 1/8-competitive algorithm. When the arrival order is chosen uniformly at random, we show that a batching algorithm, which computes a maximum-weighted matching every (d+1) periods, is 0.279-competitive.
We consider the sensitivity of algorithms for the maximum matching problem against edge and vertex modifications. Algorithms with low sensitivity are desirable because they are robust to edge failure or attack. In this work, we show a randomized $(1-epsilon)$-approximation algorithm with worst-case sensitivity $O_{epsilon}(1)$, which substantially improves upon the $(1-epsilon)$-approximation algorithm of Varma and Yoshida (arXiv 2020) that obtains average sensitivity $n^{O(1/(1+epsilon^2))}$ sensitivity algorithm, and show a deterministic $1/2$-approximation algorithm with sensitivity $exp(O(log^*n))$ for bounded-degree graphs. We show that any deterministic constant-factor approximation algorithm must have sensitivity $Omega(log^* n)$. Our results imply that randomized algorithms are strictly more powerful than deterministic ones in that the former can achieve sensitivity independent of $n$ whereas the latter cannot. We also show analogous results for vertex sensitivity, where we remove a vertex instead of an edge. As an application of our results, we give an algorithm for the online maximum matching with $O_{epsilon}(n)$ total replacements in the vertex-arrival model. By comparison, Bernstein et al. (J. ACM 2019) gave an online algorithm that always outputs the maximum matching, but only for bipartite graphs and with $O(nlog n)$ total replacements. Finally, we introduce the notion of normalized weighted sensitivity, a natural generalization of sensitivity that accounts for the weights of deleted edges. We show that if all edges in a graph have polynomially bounded weight, then given a trade-off parameter $alpha>2$, there exists an algorithm that outputs a $frac{1}{4alpha}$-approximation to the maximum weighted matching in $O(mlog_{alpha} n)$ time, with normalized weighted sensitivity $O(1)$. See paper for full abstract.
93 - Sepehr Assadi 2021
We prove a lower bound on the space complexity of two-pass semi-streaming algorithms that approximate the maximum matching problem. The lower bound is parameterized by the density of Ruzsa-Szemeredi graphs: * Any two-pass semi-streaming algorithm for maximum matching has approximation ratio at least $(1- Omega(frac{log{RS(n)}}{log{n}}))$, where $RS(n)$ denotes the maximum number of induced matchings of size $Theta(n)$ in any $n$-vertex graph, i.e., the largest density of a Ruzsa-Szemeredi graph. Currently, it is known that $n^{Omega(1/!loglog{n})} leq RS(n) leq frac{n}{2^{O(log^*{!(n)})}}$ and closing this (large) gap between upper and lower bounds has remained a notoriously difficult problem in combinatorics. Under the plausible hypothesis that $RS(n) = n^{Omega(1)}$, our lower bound is the first to rule out small-constant approximation two-pass semi-streaming algorithms for the maximum matching problem, making progress on a longstanding open question in the graph streaming literature.
This paper gives poly-logarithmic-round, distributed D-approximation algorithms for covering problems with submodular cost and monotone covering constraints (Submodular-cost Covering). The approximation ratio D is the maximum number of variables in any constraint. Special cases include Covering Mixed Integer Linear Programs (CMIP), and Weighted Vertex Cover (with D=2). Via duality, the paper also gives poly-logarithmic-round, distributed D-approximation algorithms for Fractional Packing linear programs (where D is the maximum number of constraints in which any variable occurs), and for Max Weighted c-Matching in hypergraphs (where D is the maximum size of any of the hyperedges; for graphs D=2). The paper also gives parallel (RNC) 2-approximation algorithms for CMIP with two variables per constraint and Weighted Vertex Cover. The algorithms are randomized. All of the approximation ratios exactly match those of comparable centralized algorithms.
We consider the problem of dictionary matching in a stream. Given a set of strings, known as a dictionary, and a stream of characters arriving one at a time, the task is to report each time some string in our dictionary occurs in the stream. We present a randomised algorithm which takes O(log log(k + m)) time per arriving character and uses O(k log m) words of space, where k is the number of strings in the dictionary and m is the length of the longest string in the dictionary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا