No Arabic abstract
We design a new scheduling policy to minimize the general non-decreasing cost function of age of information (AoI) in a multiuser system. In this system, the base station stochastically generates time-sensitive packets and transmits them to corresponding user equipments via an unreliable channel. We first formulate the transmission scheduling problem as an average cost constrained Markov decision process problem. Through introducing the service charge, we derive the closed-form expression for the Whittle index, based on which we design the scheduling policy. Using numerical results, we demonstrate the performance gain of our designed scheduling policy compared to the existing policies, such as the optimal policy, the on-demand Whittle index policy, and the age greedy policy.
In this short paper, we consider the problem of designing a near-optimal competitive scheduling policy for $N$ mobile users, to maximize the freshness of available information uniformly across all users. Prompted by the unreliability and non-stationarity of the emerging 5G-mmWave channels for high-speed users, we forego of any statistical assumptions of the wireless channels and user-mobility. Instead, we allow the channel states and the mobility patterns to be dictated by an omniscient adversary. It is not difficult to see that no competitive scheduling policy can exist for the corresponding throughput-maximization problem in this adversarial model. Surprisingly, we show that there exists a simple online distributed scheduling policy with a finite competitive ratio for maximizing the freshness of information in this adversarial model. Moreover, we also prove that the proposed policy is competitively optimal up to an $O(ln N)$ factor.
It is becoming increasingly clear that an important task for wireless networks is to minimize the age of information (AoI), i.e., the timeliness of information delivery. While mainstream approaches generally rely on the real-time observation of user AoI and channel state, there has been little attention to solve the problem in a complete (or partial) absence of such knowledge. In this article, we present a novel study to address the optimal blind radio resource scheduling problem in orthogonal frequency division multiplexing access (OFDMA) systems towards minimizing long-term average AoI, which is proven to be the composition of time-domain-fair clustered round-robin and frequency-domain-fair intra-cluster sub-carrier assignment. Heuristic solutions that are near-optimal as shown by simulation results are also proposed to effectively improve the performance upon presence of various degrees of extra knowledge, e.g., channel state and AoI.
Unmanned aerial vehicles (UAVs) are expected to be a key component of the next-generation wireless systems. Due to their deployment flexibility, UAVs are being considered as an efficient solution for collecting information data from ground nodes and transmitting it wirelessly to the network. In this paper, a UAV-assisted wireless network is studied, in which energy-constrained ground nodes are deployed to observe different physical processes. In this network, a UAV that has a time constraint for its operation due to its limited battery, moves towards the ground nodes to receive status update packets about their observed processes. The flight trajectory of the UAV and scheduling of status update packets are jointly optimized with the objective of achieving the minimum weighted sum for the age-of-information (AoI) values of different processes at the UAV, referred to as weighted sum-AoI. The problem is modeled as a finite-horizon Markov decision process (MDP) with finite state and action spaces. Since the state space is extremely large, a deep reinforcement learning (RL) algorithm is proposed to obtain the optimal policy that minimizes the weighted sum-AoI, referred to as the age-optimal policy. Several simulation scenarios are considered to showcase the convergence of the proposed deep RL algorithm. Moreover, the results also demonstrate that the proposed deep RL approach can significantly improve the achievable sum-AoI per process compared to the baseline policies, such as the distance-based and random walk policies. The impact of various system design parameters on the optimal achievable sum-AoI per process is also shown through extensive simulations.
As an emerging metric for the timeliness of information delivery, Age-of-Information (AoI) raises a special interest in the research area of tolerance-critical communications, wherein sufficiently short blocklength is usually adopted as an essential requirement. However, the interplay between AoI and finite blocklength is scantly treated. This paper studies the occurrence of high AoI, i.e., AoI outage, in TDMA systems with respect to the blocklength allocation among users. A Markov Decision Process model is set up for the problem, which enables a static state analysis, and therewith a policy iteration approach to improve the AoI robustness is proposed. The burstiness of outages is also analyzed to provide additional insights into this problem in the finite blocklength (FBL) regime. It is shown that, different from average AoI optimizations, a risk-sensitive approach is significantly beneficial for AoI outage optimizations, on account of the FBL regime.
In this paper, we consider the age of information (AoI) of a discrete time status updating system, focusing on finding the stationary AoI distribution assuming that the Ber/G/1/1 queue is used. Following the standard queueing theory, we show that by invoking a two-dimensional state vector which tracks the AoI and packet age in system simultaneously, the stationary AoI distribution can be derived by analyzing the steady state of the constituted two-dimensional stochastic process. We give the general formula of the AoI distribution and calculate the explicit expression when the service time is also geometrically distributed. The discrete and continuous AoI are compared, we depict the mean of discrete AoI and that of continuous time AoI for system with M/M/1/1 queue. Although the stationary AoI distribution of some continuous time single-server system has been determined before, in this paper, we shall prove that the standard queueing theory is still appliable to analyze the discrete AoI, which is even stronger than the proposed methods handling the continuous AoI.