In this work we bring out the existence of a novel kind of synchronization associated to the size of a complex system. A dichotomic random jump process associated to the dynamics of an externally driven stochastic system with $N$ coupled units is constructed. We define an output frequency and phase diffusion coefficient. System size synchronization occurs when the average output frequency is locked to the external one and the average phase diffusion coefficient shows a very deep minimum for a range of system sizes. Analytical and numerical procedures are introduced to study the phenomenon, and the results describe successfully the existence of system size synchronization.