Do you want to publish a course? Click here

A projection-based model reduction method for nonlinear mechanics with internal variables: application to thermo-hydro-mechanical systems

283   0   0.0 ( 0 )
 Added by Tommaso Taddei
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a projection-based monolithic model order reduction (MOR) procedure for a class of problems in nonlinear mechanics with internal variables. The work is is motivated by applications to thermo-hydro-mechanical (THM) systems for radioactive waste disposal. THM equations model the behaviour of temperature, pore water pressure and solid displacement in the neighborhood of geological repositories, which contain radioactive waste and are responsible for a significant thermal flux towards the Earths surface. We develop an adaptive sampling strategy based on the POD-Greedy method, and we develop an element-wise empirical quadrature hyper-reduction procedure to reduce assembling costs. We present numerical results for a two-dimensional THM system to illustrate and validate the proposed methodology.



rate research

Read More

The Kolmogorov $n$-width of the solution manifolds of transport-dominated problems can decay slowly. As a result, it can be challenging to design efficient and accurate reduced order models (ROMs) for such problems. To address this issue, we propose a new learning-based projection method to construct nonlinear adaptive ROMs for transport problems. The construction follows the offline-online decomposition. In the offline stage, we train a neural network to construct adaptive reduced basis dependent on time and model parameters. In the online stage, we project the solution to the learned reduced manifold. Inheriting the merits from both deep learning and the projection method, the proposed method is more efficient than the conventional linear projection-based methods, and may reduce the generalization error of a solely learning-based ROM. Unlike some learning-based projection methods, the proposed method does not need to take derivatives of the neural network in the online stage.
We investigate a specific finite element model to study the thermoelastic behavior of an elastic body within the context of nonlinear strain-limiting constitutive relation. As a special subclass of implicit relations, the thermoelastic response of our interest is such that stresses can be arbitrarily large, but strains remain small, especially in the neighborhood of crack-tips. Thus, the proposed model can be inherently consistent with the assumption of the small strain theory. In the present communication, we consider a two-dimensional coupled system-linear and quasilinear partial differential equations for temperature and displacements, respectively. Two distinct temperature distributions of the Dirichlet type are considered for boundary condition, and a standard finite element method of continuous Galerkin is employed to obtain the numerical solutions for the field variables. For a domain with an edge-crack, we find that the near-tip strain growth of our model is much slower than the growth of stress, which is the salient feature compared to the inconsistent results of the classical linearized description of the elastic body. Current study can provide a theoretical and computational framework to develop physically meaningful models and examine other coupled multi-physics such as an evolution of complex network of cracks induced by thermal shocks.
The usual approach to model reduction for parametric partial differential equations (PDEs) is to construct a linear space $V_n$ which approximates well the solution manifold $mathcal{M}$ consisting of all solutions $u(y)$ with $y$ the vector of parameters. This linear reduced model $V_n$ is then used for various tasks such as building an online forward solver for the PDE or estimating parameters from data observations. It is well understood in other problems of numerical computation that nonlinear methods such as adaptive approximation, $n$-term approximation, and certain tree-based methods may provide improved numerical efficiency. For model reduction, a nonlinear method would replace the linear space $V_n$ by a nonlinear space $Sigma_n$. This idea has already been suggested in recent papers on model reduction where the parameter domain is decomposed into a finite number of cells and a linear space of low dimension is assigned to each cell. Up to this point, little is known in terms of performance guarantees for such a nonlinear strategy. Moreover, most numerical experiments for nonlinear model reduction use a parameter dimension of only one or two. In this work, a step is made towards a more cohesive theory for nonlinear model reduction. Framing these methods in the general setting of library approximation allows us to give a first comparison of their performance with those of standard linear approximation for any general compact set. We then turn to the study these methods for solution manifolds of parametrized elliptic PDEs. We study a very specific example of library approximation where the parameter domain is split into a finite number $N$ of rectangular cells and where different reduced affine spaces of dimension $m$ are assigned to each cell. The performance of this nonlinear procedure is analyzed from the viewpoint of accuracy of approximation versus $m$ and $N$.
This work presents the windowed space-time least-squares Petrov-Galerkin method (WST-LSPG) for model reduction of nonlinear parameterized dynamical systems. WST-LSPG is a generalization of the space-time least-squares Petrov-Galerkin method (ST-LSPG). The main drawback of ST-LSPG is that it requires solving a dense space-time system with a space-time basis that is calculated over the entire global time domain, which can be unfeasible for large-scale applications. Instead of using a temporally-global space-time trial subspace and minimizing the discrete-in-time full-order model (FOM) residual over an entire time domain, the proposed WST-LSPG approach addresses this weakness by (1) dividing the time simulation into time windows, (2) devising a unique low-dimensional space-time trial subspace for each window, and (3) minimizing the discrete-in-time space-time residual of the dynamical system over each window. This formulation yields a problem with coupling confined within each window, but sequential across the windows. To enable high-fidelity trial subspaces characterized by a relatively minimal number of basis vectors, this work proposes constructing space-time bases using tensor decompositions for each window. WST-LSPG is equipped with hyper-reduction techniques to further reduce the computational cost. Numerical experiments for the one-dimensional Burgers equation and the two-dimensional compressible Navier-Stokes equations for flow over a NACA 0012 airfoil demonstrate that WST-LSPG is superior to ST-LSPG in terms of accuracy and computational gain.
117 - Tommaso Taddei 2019
We propose a general --- i.e., independent of the underlying equation --- registration method for parameterized Model Order Reduction. Given the spatial domain $Omega subset mathbb{R}^d$ and a set of snapshots ${ u^k }_{k=1}^{n_{rm train}}$ over $Omega$ associated with $n_{rm train}$ values of the model parameters $mu^1,ldots, mu^{n_{rm train}} in mathcal{P}$, the algorithm returns a parameter-dependent bijective mapping $boldsymbol{Phi}: Omega times mathcal{P} to mathbb{R}^d$: the mapping is designed to make the mapped manifold ${ u_{mu} circ boldsymbol{Phi}_{mu}: , mu in mathcal{P} }$ more suited for linear compression methods. We apply the registration procedure, in combination with a linear compression method, to devise low-dimensional representations of solution manifolds with slowly-decaying Kolmogorov $N$-widths; we also consider the application to problems in parameterized geometries. We present a theoretical result to show the mathematical rigor of the registration procedure. We further present numerical results for several two-dimensional problems, to empirically demonstrate the effectivity of our proposal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا