HCDG: A Hierarchical Consistency Framework for Domain Generalization on Medical Image Segmentation


Abstract in English

Modern deep neural networks struggle to transfer knowledge and generalize across domains when deploying to real-world applications. Domain generalization (DG) aims to learn a universal representation from multiple source domains to improve the network generalization ability on unseen target domains. Previous DG methods mostly focus on the data-level consistency scheme to advance the generalization capability of deep networks, without considering the synergistic regularization of different consistency schemes. In this paper, we present a novel Hierarchical Consistency framework for Domain Generalization (HCDG) by ensembling Extrinsic Consistency and Intrinsic Consistency. Particularly, for Extrinsic Consistency, we leverage the knowledge across multiple source domains to enforce data-level consistency. Also, we design a novel Amplitude Gaussian-mixing strategy for Fourier-based data augmentation to enhance such consistency. For Intrinsic Consistency, we perform task-level consistency for the same instance under the dual-task form. We evaluate the proposed HCDG framework on two medical image segmentation tasks, i.e., optic cup/disc segmentation on fundus images and prostate MRI segmentation. Extensive experimental results manifest the effectiveness and versatility of our HCDG framework. Code will be available once accept.

Download