Do you want to publish a course? Click here

Purely leptonic decays of the ground charged vector mesons

422   0   0.0 ( 0 )
 Added by Yueling Yang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Inspired by the potential prospects of LHCb, Belle-II, STCF, CEPC and FCC-ee experiments, we discussed the probabilities of experimental investigation on the purely leptonic decays of the ground charged vector mesons including ${rho}^{pm}$, $K^{{ast}{pm}}$, $D_{d,s}^{{ast}{pm}}$ and $B_{u,c}^{{ast}{pm}}$.



rate research

Read More

We give a short and basic introduction to our covariant Dyson-Schwinger-Bethe-Salpeter-equation approach using a rainbow-ladder truncated model of QCD, in which we investigate the leptonic decay properties of heavy quarkonium states in the pseudoscalar and vector channels. Comparing the magnitudes of decay constants, we identify radial 1-- excitations in our calculation with experimental excitations of J/Psi and Upsilon. Particular attention is paid to those states regarded as D-wave states in the quark model. We predict e+e- decay width of the Upsilon(1^3D_1) and Upsilon(2^3D_1) states of the order of ca. 15 eV or more. We also provide a set of predictions for decay constants of pseudoscalar radial excitations in heavy quarkonia.
The measured rate for D_s -> l nu decays, where l is a muon or tau, is larger than the standard model prediction, which relies on lattice QCD, at the 3.8 sigma level. We discuss how robust the theoretical prediction is, and we show that the discrepancy with experiment may be explained by a charged Higgs boson or a leptoquark.
We give a systematic study of ${bf B}_cto {bf B}_n V$ decays, where ${bf B}_c$ and $ {bf B}_n$ correspond to the anti-triplet charmed and octet baryons, respectively, while $V$ stand for the vector mesons. We calculate the color-symmetric contributions to the decays from the effective Hamiltonian with the factorization approach and extract the anti-symmetric ones based on the experimental measurements and $SU(3)_F$ flavor symmetry. We find that most of the existing experimental data for ${bf B}_cto {bf B}_n V$ are consistent with our fitting results. We present all the branching ratios of the Cabbibo allowed, singly Cabbibo suppressed and doubly Cabbibo suppressed decays of ${bf B}_cto {bf B}_n V$. The decay parameters for the daughter baryons and mesons in ${bf B}_cto {bf B}_n V$ are also evaluated. In particular, we point out that the Cabbibo allowed decays of $Lambda_c^+ to Lambda^0 rho^+$ and $ Xi_c^0 to Xi^- rho^+$ as well as the singly Cabbibo suppressed ones of $Lambda_c^+ to Lambda^0 K^{*+}$, $Xi_c^+ to Sigma^+ phi$ and $Xi_c^0to Xi^- K^{*+}$ have large branching ratios and decay parameters with small uncertainties, which can be tested by the experimental searches at the charm facilities.
74 - Jie Zhu , Zheng-Tao Wei , 2018
The recent experimental developments require a more precise theoretical study of weak decays of heavy baryon $Lambda_b^0$. In this work, we provide an updated and systematic analysis of both the semi-leptonic and nonleptonic decays of $Lambda^0_b$ into baryons $Lambda^+_c$, $Lambda$, $p$, and $n$. The diquark approximation is adopted so that the methods developed in the $B$ meson system can be extended into the baryon system. The baryon-to-baryon transition form factors are calculated in the framework of a covariant light-front quark model. The form factors $f_3, ~g_3$ can be extracted and are found to be non-negligible. The semi-leptonic processes of $Lambda^0_bto Lambda^+_c(p)l^-bar u_l$ are calculated and the results are consistent with the experiment. We study the non-leptonic processes within the QCD factorization approach. The decay amplitudes are calculated at the next-to-leading order in strong coupling constant $alpha_s$. We calculate the non-leptonic decays of $Lambda^0_b$ into a baryon and a s-wave meson (pseudoscalar or vector) including 44 processes in total. The branching ratios and direct CP asymmetries are predicted. The numerical results are compared to the experimental data and those in the other theoretical approaches. Our results show validity of the diquark approximation and application of QCD factorization approach into the heavy baryon system.
We present a comparison of existing experimental data for the radiative leptonic decays $Ptoell u_ellgamma$, where $P=K$ or $pi$ and $ell=e$ or $mu$, from the KLOE, PIBETA, E787, ISTRA+ and OKA collaborations with theoretical predictions based on the recent non-perturbative determinations of the structure-dependent vector and axial-vector form factors, $F_V$ and $F_A$ respectively. These were obtained using lattice QCD+QED simulations at order $O(alpha_{mathrm{em}})$ in the electromagnetic coupling. We find good agreement with the KLOE data on $Kto e u_egamma$ decays from which the form factor $F^+=F_V+F_A$ can be determined. For $Ktomu u_mugamma$ decays we observe differences of up to 3,-,4 standard deviations at large photon energies between the theoretical predictions and the data from the E787, ISTRA+ and OKA experiments and similar discrepancies in some kinematical regions with the PIBETA experiment on radiative pion decays. A global study of all the kaon-decay data within the Standard Model results in a poor fit, largely because at large photon energies the KLOE and E787 data cannot be reproduced simultaneously in terms of the same form factor $F^+$. The discrepancy between the theoretical and experimental values of the form factor $F^-=F_V-F_A$ is even more pronounced. These observations motivate future improvements of both the theoretical and experimental determinations of the structure-dependent form factors $F^+$ and $F^-$, as well as further theoretical investigations of models of new physics which might for example, include possible flavor changing interactions beyond $V - A$ and/or non-universal corrections to the lepton couplings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا