Position representation is crucial for building position-aware representations in Transformers. Existing position representations suffer from a lack of generalization to test data with unseen lengths or high computational cost. We investigate shifted absolute position embedding (SHAPE) to address both issues. The basic idea of SHAPE is to achieve shift invariance, which is a key property of recent successful position representations, by randomly shifting absolute positions during training. We demonstrate that SHAPE is empirically comparable to its counterpart while being simpler and faster.
Transformers are arguably the main workhorse in recent Natural Language Processing research. By definition a Transformer is invariant with respect to reordering of the input. However, language is inherently sequential and word order is essential to the semantics and syntax of an utterance. In this article, we provide an overview and theoretical comparison of existing methods to incorporate position information into Transformer models. The objectives of this survey are to (1) showcase that position information in Transformer is a vibrant and extensive research area; (2) enable the reader to compare existing methods by providing a unified notation and systematization of different approaches along important model dimensions; (3) indicate what characteristics of an application should be taken into account when selecting a position encoding; (4) provide stimuli for future research.
Neural machine translation has achieved remarkable empirical performance over standard benchmark datasets, yet recent evidence suggests that the models can still fail easily dealing with substandard inputs such as misspelled words, To overcome this issue, we introduce a new encoding heuristic of the input symbols for character-level NLP models: it encodes the shape of each character through the images depicting the letters when printed. We name this new strategy visual embedding and it is expected to improve the robustness of NLP models because humans also process the corpus visually through printed letters, instead of machinery one-hot vectors. Empirically, our method improves models robustness against substandard inputs, even in the test scenario where the models are tested with the noises that are beyond what is available during the training phase.
A major challenge in deploying transformer models is their prohibitive inference cost, which quadratically scales with the input sequence length. This makes it especially difficult to use transformers for processing long sequences. To address this, we present a novel Learned Token Pruning (LTP) method that reduces redundant tokens as the data passes through the different layers of the transformer. In particular, LTP prunes tokens with an attention score below a threshold value, which is learned during training. Importantly, our threshold based method avoids algorithmically expensive operations such as top-k token selection which are used in prior token pruning methods, and also leads to structured pruning. We extensively test the performance of our approach on multiple GLUE tasks and show that our learned threshold based method consistently outperforms the prior state-of-the-art top-k token based method by up to ~2% higher accuracy with the same amount of FLOPs. Furthermore, our preliminary results show up to 1.4x and 1.9x throughput improvement on Tesla T4 GPU and Intel Haswell CPU, respectively, with less than 1% of accuracy drop (and up to 2.1x FLOPs reduction). Our code has been developed in PyTorch and has been open-sourced.
Low-resource language translation is a challenging but socially valuable NLP task. Building on recent work adapting the Transformers normalization to this setting, we propose QKNorm, a normalization technique that modifies the attention mechanism to make the softmax function less prone to arbitrary saturation without sacrificing expressivity. Specifically, we apply $ell_2$ normalization along the head dimension of each query and key matrix prior to multiplying them and then scale up by a learnable parameter instead of dividing by the square root of the embedding dimension. We show improvements averaging 0.928 BLEU over state-of-the-art bilingual benchmarks for 5 low-resource translation pairs from the TED Talks corpus and IWSLT15.
Despite the great promise of Transformers in many sequence modeling tasks (e.g., machine translation), their deterministic nature hinders them from generalizing to high entropy tasks such as dialogue response generation. Previous work proposes to capture the variability of dialogue responses with a recurrent neural network (RNN)-based conditional variational autoencoder (CVAE). However, the autoregressive computation of the RNN limits the training efficiency. Therefore, we propose the Variational Transformer (VT), a variational self-attentive feed-forward sequence model. The VT combines the parallelizability and global receptive field of the Transformer with the variational nature of the CVAE by incorporating stochastic latent variables into Transformers. We explore two types of the VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of fine-grained latent variables. Then, the proposed models are evaluated on three conversational datasets with both automatic metric and human evaluation. The experimental results show that our models improve standard Transformers and other baselines in terms of diversity, semantic relevance, and human judgment.