Stably diffeomorphic manifolds and modified surgery obstructions


Abstract in English

For every $k geq 2$ we construct infinitely many $4k$-dimensional manifolds that are all stably diffeomorphic but pairwise not homotopy equivalent. Each of these manifolds has hyperbolic intersection form and is stably parallelisable. In fact we construct infinitely many such infinite sets. To achieve this we prove a realisation result for appropriate subsets of Krecks modified surgery monoid $ell_{2q+1}(mathbb{Z}[pi])$, analogous to Walls realisation of the odd-dimensional surgery obstruction $L$-group $L_{2q+1}^s(mathbb{Z}[pi])$.

Download