Do you want to publish a course? Click here

AdViCE: Aggregated Visual Counterfactual Explanations for Machine Learning Model Validation

220   0   0.0 ( 0 )
 Added by Oscar Gomez
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Rapid improvements in the performance of machine learning models have pushed them to the forefront of data-driven decision-making. Meanwhile, the increased integration of these models into various application domains has further highlighted the need for greater interpretability and transparency. To identify problems such as bias, overfitting, and incorrect correlations, data scientists require tools that explain the mechanisms with which these model decisions are made. In this paper we introduce AdViCE, a visual analytics tool that aims to guide users in black-box model debugging and validation. The solution rests on two main visual user interface innovations: (1) an interactive visualization design that enables the comparison of decisions on user-defined data subsets; (2) an algorithm and visual design to compute and visualize counterfactual explanations - explanations that depict model outcomes when data features are perturbed from their original values. We provide a demonstration of the tool through a use case that showcases the capabilities and potential limitations of the proposed approach.



rate research

Read More

The continued improvements in the predictive accuracy of machine learning models have allowed for their widespread practical application. Yet, many decisions made with seemingly accurate models still require verification by domain experts. In addition, end-users of a model also want to understand the reasons behind specific decisions. Thus, the need for interpretability is increasingly paramount. In this paper we present an interactive visual analytics tool, ViCE, that generates counterfactual explanations to contextualize and evaluate model decisions. Each sample is assessed to identify the minimal set of changes needed to flip the models output. These explanations aim to provide end-users with personalized actionable insights with which to understand, and possibly contest or improve, automated decisions. The results are effectively displayed in a visual interface where counterfactual explanations are highlighted and interactive methods are provided for users to explore the data and model. The functionality of the tool is demonstrated by its application to a home equity line of credit dataset.
89 - Yash Goyal , Ziyan Wu , Jan Ernst 2019
In this work, we develop a technique to produce counterfactual visual explanations. Given a query image $I$ for which a vision system predicts class $c$, a counterfactual visual explanation identifies how $I$ could change such that the system would output a different specified class $c$. To do this, we select a distractor image $I$ that the system predicts as class $c$ and identify spatial regions in $I$ and $I$ such that replacing the identified region in $I$ with the identified region in $I$ would push the system towards classifying $I$ as $c$. We apply our approach to multiple image classification datasets generating qualitative results showcasing the interpretability and discriminativeness of our counterfactual explanations. To explore the effectiveness of our explanations in teaching humans, we present machine teaching experiments for the task of fine-grained bird classification. We find that users trained to distinguish bird species fare better when given access to counterfactual explanations in addition to training examples.
Attention mechanism has demonstrated great potential in fine-grained visual recognition tasks. In this paper, we present a counterfactual attention learning method to learn more effective attention based on causal inference. Unlike most existing methods that learn visual attention based on conventional likelihood, we propose to learn the attention with counterfactual causality, which provides a tool to measure the attention quality and a powerful supervisory signal to guide the learning process. Specifically, we analyze the effect of the learned visual attention on network prediction through counterfactual intervention and maximize the effect to encourage the network to learn more useful attention for fine-grained image recognition. Empirically, we evaluate our method on a wide range of fine-grained recognition tasks where attention plays a crucial role, including fine-grained image categorization, person re-identification, and vehicle re-identification. The consistent improvement on all benchmarks demonstrates the effectiveness of our method. Code is available at https://github.com/raoyongming/CAL
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation that applies to both classification and regression models. Our method is a globally convergent search algorithm with support for arbitrary regression models and constraints like feature sparsity and actionable recourse, and furthermore can answer multiple counterfactual questions in parallel while learning from previous queries. We formulate CFE search for regression models in a rigorous mathematical framework using differentiable potentials, which resolves robustness issues in threshold-based objectives. We prove that in this framework, (a) verifying the existence of counterfactuals is NP-complete; and (b) that finding instances using such potentials is CLS-complete. We describe a unified algorithm for CFEs using a specialised acquisition function that composes both expected improvement and an exponential-polynomial (EP) family with desirable properties. Our evaluation on real-world benchmark domains demonstrate high sample-efficiency and precision.
Visual analytics for machine learning has recently evolved as one of the most exciting areas in the field of visualization. To better identify which research topics are promising and to learn how to apply relevant techniques in visual analytics, we systematically review 259 papers published in the last ten years together with representative works before 2010. We build a taxonomy, which includes three first-level categories: techniques before model building, techniques during model building, and techniques after model building. Each category is further characterized by representative analysis tasks, and each task is exemplified by a set of recent influential works. We also discuss and highlight research challenges and promising potential future research opportunities useful for visual analytics researchers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا