No Arabic abstract
Here we study the long time behavior of an advection-diffusion equation with a general time varying (including random) shear flow imposing no-flux boundary conditions on channel walls. We derive the asymptotic approximation of the scalar field at long times by using center manifold theory. We carefully compare it with existing time varying homogenization theory as well as other existing center manifold based studies, and present conditions on the flows under which our new approximations give a substantial improvement to these existing theories. A recent study cite{ding2020ergodicity} has shown that Gaussian random shear flows induce a deterministic effective diffusivity at long times, and explicitly calculated the invariant measure. Here, with our established asymptotic expansions, we not only concisely demonstrate those prior conclusions for Gaussian random shear flows, but also generalize the conclusions regarding determinism to a much broader class of random (non-Gaussian) shear flows. Such results are important ergodicity-like results in that they assure an experimentalist need only perform a single realization of a random flow to observe the ensemble moment predictions at long time. Monte-Carlo simulations are presented illustrating how the highly random behavior converges to the deterministic limit at long time. Counterintuitively, we present a case demonstrating that the random flow may not induce larger dispersion than its deterministic counterpart, and in turn present rigorous conditions under which a random renewing flow induces a stronger effective diffusivity.
We develop a dynamical approach to infinite volume directed polymer measures in random environments. We define polymer dynamics in 1+1 dimension as a stochastic gradient flow on polymers pinned at the origin, for energy involving quadratic nearest neighbor interaction and local interaction with random environment. We prove existence and uniqueness of the solution, continuity of the flow, the order-preserving property with respect to the coordinatewise partial order, and the invariance of the asymptotic slope. We establish ordering by noise which means that if two initial conditions have distinct slopes, then the associated solutions eventually get ordered coordinatewise. This, along with the shear-invariance property and existing results on static infinite volume polymer measures, allows to prove that for a fixed asymptotic slope and almost every realization of the environment, the polymer dynamics has a unique invariant distribution given by a unique infinite volume polymer measure, and, moreover, One Force -- One Solution principle holds. We also prove that every polymer measure is concentrated on paths with well-defined asymptotic slopes and give an estimate on deviations from straight lines.
We use direct numerical simulations to compute turbulent transport coefficients for passive scalars in turbulent rotating flows. Effective diffusion coefficients in the directions parallel and perpendicular to the rotations axis are obtained by studying the diffusion of an imposed initial profile for the passive scalar, and calculated by measuring the scalar average concentration and average spatial flux as a function of time. The Rossby and Schmidt numbers are varied to quantify their effect on the effective diffusion. It is find that rotation reduces scalar diffusivity in the perpendicular direction. The perpendicular diffusion can be estimated from mixing length arguments using the characteristic velocities and lengths perpendicular to the rotation axis. Deviations are observed for small Schmidt numbers, for which turbulent transport decreases and molecular diffusion becomes more significant.
We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential field known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid, and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability of traveling solutions is investigated in unsteady conditions. It is shown that the resulting dispersion relation is an integral equation of the Fredholm type, and yields two general families of stable modes: singular modes whose eigenvalues form a continuous spectrum, and a finite number of discrete global modes. Depending on the value of drag coefficient, stable modes can be over-damped, critically damped, or decaying oscillatory waves. The results of linear perturbation analysis are confirmed through the numerical solution of the fully nonlinear Fokker-Planck equation.
We use direct numerical simulations to compute structure functions, scaling exponents, probability density functions and turbulent transport coefficients of passive scalars in turbulent rotating helical and non-helical flows. We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation is present, with a spectral law consistent with $sim k_{perp}^{-1.4}$ for the passive scalar variance spectrum. This scaling law is consistent with the phenomenological argument presented in cite{imazio2011} for rotating non-helical flows, wich states that if energy follows a $E(k)sim k^{-n}$ law, then the passive scalar variance follows a law $V(k) sim k^{-n_{theta}}$ with $n_{theta}=(5-n)/2$. With the second order scaling exponent obtained from this law, and using the Kraichnan model, we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical results. Intermittency of the passive scalar is found to be stronger than in the non-helical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability density functions of field increments. Finally, Ficks law is used to compute the effective diffusion coefficients in the directions parallel and perpendicular to the rotation axis. Calculations indicate that horizontal diffusion decreases in the presence of helicity in rotating flows, while vertical diffusion increases. We use a mean field argument to explain this behavior in terms of the amplitude of velocity field fluctuations.
We study transport of a weakly diffusive pollutant (a passive scalar) by thermoconvective flow in a fluid-saturated horizontal porous layer heated from below under frozen parametric disorder. In the presence of disorder (random frozen inhomogeneities of the heating or of macroscopic properties of the porous matrix), spatially localized flow patterns appear below the convective instability threshold of the system without disorder. Thermoconvective flows crucially effect the transport of a pollutant along the layer, especially when its molecular diffusion is weak. The effective (or eddy) diffusivity also allows to observe the transition from a set of localized currents to an almost everywhere intense global flow. We present results of numerical calculation of the effective diffusivity and discuss them in the context of localization of fluid currents and the transition to a global flow. Our numerical findings are in a good agreement with the analytical theory we develop for the limit of a small molecular diffusivity and sparse domains of localized currents. Though the results are obtained for a specific physical system, they are relevant for a broad variety of fluid dynamical systems.