Do you want to publish a course? Click here

Abnormal Surface Nonlinear Optical Responses in Topological Materials

195   0   0.0 ( 0 )
 Added by Haowei Xu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nonlinear optical (NLO) responses of topological materials are under active research in recent years. Yet by far most studies focused on the bulk properties, whereas the surface effects and the difference between surface and bulk responses have not been systematically studied. In this work, we develop a generic Greens function framework to investigate the surface NLO properties of topological materials. The Greens function framework can naturally incorporate many body effects and can be easily extended to high order NLO responses. Using $rm T_d WTe_2$ as an example, we reveal that the surface can behave disparately from the bulk under light illumination. Remarkably, the shift and circular current on the surface can flow in opposite directions to that in the bulk. Moreover, the light induced spin current on the surface can be orders of magnitude stronger than that in the bulk. We also study the responses under inhomogeneous field and higher order NLO effect, which are all distinct on the surface. These anomalous surface NLO responses suggest that light can be a valuable tool for probing the surface states of topological materials, while on the other hand, the surface effects shall be prudently considered when investigating the optical properties of topological materials.



rate research

Read More

Topological semimetals exhibit band crossings near the Fermi energy, which are protected by the nontrivial topological character of the wave functions. In many cases, these topological band degeneracies give rise to exotic surface states and unusual magneto-transport properties. In this paper, we present a complete classification of all possible nonsymmorphic band degeneracies in hexagonal materials with strong spin-orbit coupling. This includes (i) band crossings protected by conventional nonsymmorphic symmetries, whose partial translation is within the invariant space of the mirror/rotation symmetry; and (ii) band crossings protected by off-centered mirror/rotation symmetries, whose partial translation is orthogonal to the invariant space. Our analysis is based on (i) the algebraic relations obeyed by the symmetry operators and (ii) the compatibility relations between irreducible representations at different high-symmetry points of the Brillouin zone. We identify a number of existing materials where these nonsymmorphic nodal lines are realized. Based on these example materials, we examine the surface states that are associated with the topological band crossings. Implications for experiments and device applications are briefly discussed.
Avalanche phenomena leverage steeply nonlinear dynamics to generate disproportionately high responses from small perturbations and are found in a multitude of events and materials, enabling technologies including optical phase-conjugate imaging, infrared quantum counting, and efficient upconverted lasing. However, the photon avalanching (PA) mechanism underlying these optical innovations has been observed only in bulk materials and aggregates, and typically at cryogenic temperatures, limiting its utility and impact. Here, we report the realization of PA at room temperature in single nanostructures--small, Tm-doped upconverting nanocrystals--and demonstrate their use in superresolution imaging at near-infrared (NIR) wavelengths within spectral windows of maximal biological transparency. Avalanching nanoparticles (ANPs) can be pumped by continuous-wave or pulsed lasers and exhibit all of the defining features of PA. These hallmarks include excitation power thresholds, long rise time at threshold, and a dominant excited-state absorption that is >13,000x larger than ground-state absorption. Beyond the avalanching threshold, ANP emission scales nonlinearly with the 26th power of pump intensity. This enables the realization of photon-avalanche single-beam superresolution imaging (PASSI), achieving sub-70 nm spatial resolution using only simple scanning confocal microscopy and before any computational analysis. Pairing their steep nonlinearity with existing superresolution techniques and computational methods, ANPs allow for imaging with higher resolution and at ca. 100-fold lower excitation intensities than is possible with other probes. The low PA threshold and exceptional photostability of ANPs also suggest their utility in a diverse array of applications including sub-wavelength bioimaging, IR detection, temperature and pressure transduction, neuromorphic computing, and quantum optics.
The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optical effects from bulk states only, disregarding topological surface responses. Here we propose a new (hitherto unknown) surface-only topological photocurrent response from chiral Fermi arcs. Using the ideal topological chiral semimetal RhSi as a representative, we quantitatively compute the topologically robust photocurrents from Fermi arcs on different surfaces. By rigorous crystal symmetry analysis, we demonstrate that Fermi arc photocurrents can be perpendicular to the bulk injection currents regardless of the choice of materials surface. We then generalize this finding to all cubic chiral space groups and predict material candidates. Our theory reveals a powerful notion where common crystalline-symmetry can be used to induce universal topological responses as well as making it possible to completely disentangle bulk and surface topological responses in many conducting material families.
We review theoretical and experimental highlights in transport in two-dimensional materials focussing on key developments over the last five years. Topological insulators are finding applications in magnetic devices, while Hall transport in doped samples and the general issue of topological protection remain controversial. In transition metal dichalcogenides valley-dependent electrical and optical phenomena continue to stimulate state-of-the-art experiments. In Weyl semimetals the properties of Fermi arcs are being actively investigated. A new field, expected to grow in the near future, focuses on the non-linear electrical and optical responses of topological materials, where fundamental questions are once more being asked about the intertwining roles of the Berry curvature and disorder scattering. In topological superconductors the quest for chiral superconductivity, Majorana fermions and topological quantum computing is continuing apace.
We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility fits well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, the exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا