Do you want to publish a course? Click here

Extracting Event Temporal Relations via Hyperbolic Geometry

103   0   0.0 ( 0 )
 Added by Xingwei Tan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Detecting events and their evolution through time is a crucial task in natural language understanding. Recent neural approaches to event temporal relation extraction typically map events to embeddings in the Euclidean space and train a classifier to detect temporal relations between event pairs. However, embeddings in the Euclidean space cannot capture richer asymmetric relations such as event temporal relations. We thus propose to embed events into hyperbolic spaces, which are intrinsically oriented at modeling hierarchical structures. We introduce two approaches to encode events and their temporal relations in hyperbolic spaces. One approach leverages hyperbolic embeddings to directly infer event relations through simple geometrical operations. In the second one, we devise an end-to-end architecture composed of hyperbolic neural units tailored for the temporal relation extraction task. Thorough experimental assessments on widely used datasets have shown the benefits of revisiting the tasks on a different geometrical space, resulting in state-of-the-art performance on several standard metrics. Finally, the ablation study and several qualitative analyses highlighted the rich event semantics implicitly encoded into hyperbolic spaces.



rate research

Read More

Extracting temporal relations (e.g., before, after, concurrent) among events is crucial to natural language understanding. Previous studies mainly rely on neural networks to learn effective features or manual-crafted linguistic features for temporal relation extraction, which usually fail when the context between two events is complex or wide. Inspired by the examination of available temporal relation annotations and human-like cognitive procedures, we propose a new Temporal Graph Transformer network to (1) explicitly find the connection between two events from a syntactic graph constructed from one or two continuous sentences, and (2) automatically locate the most indicative temporal cues from the path of the two event mentions as well as their surrounding concepts in the syntactic graph with a new temporal-oriented attention mechanism. Experiments on MATRES and TB-Dense datasets show that our approach significantly outperforms previous state-of-the-art methods on both end-to-end temporal relation extraction and temporal relation classification.
79 - Zhe Liu , Yibin Xu 2021
Transformer model architectures have become an indispensable staple in deep learning lately for their effectiveness across a range of tasks. Recently, a surge of X-former models have been proposed which improve upon the original Transformer architecture. However, most of these variants make changes only around the quadratic time and memory complexity of self-attention, i.e. the dot product between the query and the key. Whats more, they are calculate solely in Euclidean space. In this work, we propose a novel Transformer with Hyperbolic Geometry (THG) model, which take the advantage of both Euclidean space and Hyperbolic space. THG makes improvements in linear transformations of self-attention, which are applied on the input sequence to get the query and the key, with the proposed hyperbolic linear. Extensive experiments on sequence labeling task, machine reading comprehension task and classification task demonstrate the effectiveness and generalizability of our model. It also demonstrates THG could alleviate overfitting.
Natural language data exhibit tree-like hierarchical structures such as the hypernym-hyponym relations in WordNet. FastText, as the state-of-the-art text classifier based on shallow neural network in Euclidean space, may not model such hierarchies precisely with limited representation capacity. Considering that hyperbolic space is naturally suitable for modeling tree-like hierarchical data, we propose a new model named HyperText for efficient text classification by endowing FastText with hyperbolic geometry. Empirically, we show that HyperText outperforms FastText on a range of text classification tasks with much reduced parameters.
Extracting structured clinical information from free-text radiology reports can enable the use of radiology report information for a variety of critical healthcare applications. In our work, we present RadGraph, a dataset of entities and relations in full-text chest X-ray radiology reports based on a novel information extraction schema we designed to structure radiology reports. We release a development dataset, which contains board-certified radiologist annotations for 500 radiology reports from the MIMIC-CXR dataset (14,579 entities and 10,889 relations), and a test dataset, which contains two independent sets of board-certified radiologist annotations for 100 radiology reports split equally across the MIMIC-CXR and CheXpert datasets. Using these datasets, we train and test a deep learning model, RadGraph Benchmark, that achieves a micro F1 of 0.82 and 0.73 on relation extraction on the MIMIC-CXR and CheXpert test sets respectively. Additionally, we release an inference dataset, which contains annotations automatically generated by RadGraph Benchmark across 220,763 MIMIC-CXR reports (around 6 million entities and 4 million relations) and 500 CheXpert reports (13,783 entities and 9,908 relations) with mappings to associated chest radiographs. Our freely available dataset can facilitate a wide range of research in medical natural language processing, as well as computer vision and multi-modal learning when linked to chest radiographs.
The best evidence concerning comparative treatment effectiveness comes from clinical trials, the results of which are reported in unstructured articles. Medical experts must manually extract information from articles to inform decision-making, which is time-consuming and expensive. Here we consider the end-to-end task of both (a) extracting treatments and outcomes from full-text articles describing clinical trials (entity identification) and, (b) inferring the reported results for the former with respect to the latter (relation extraction). We introduce new data for this task, and evaluate models that have recently achieved state-of-the-art results on similar tasks in Natural Language Processing. We then propose a new method motivated by how trial results are typically presented that outperforms these purely data-driven baselines. Finally, we run a fielded evaluation of the model with a non-profit seeking to identify existing drugs that might be re-purposed for cancer, showing the potential utility of end-to-end evidence extraction systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا