Do you want to publish a course? Click here

Constructing Phrase-level Semantic Labels to Form Multi-Grained Supervision for Image-Text Retrieval

133   0   0.0 ( 0 )
 Added by Zhihao Fan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing research for image text retrieval mainly relies on sentence-level supervision to distinguish matched and mismatched sentences for a query image. However, semantic mismatch between an image and sentences usually happens in finer grain, i.e., phrase level. In this paper, we explore to introduce additional phrase-level supervision for the better identification of mismatched units in the text. In practice, multi-grained semantic labels are automatically constructed for a query image in both sentence-level and phrase-level. We construct text scene graphs for the matched sentences and extract entities and triples as the phrase-level labels. In order to integrate both supervision of sentence-level and phrase-level, we propose Semantic Structure Aware Multimodal Transformer (SSAMT) for multi-modal representation learning. Inside the SSAMT, we utilize different kinds of attention mechanisms to enforce interactions of multi-grain semantic units in both sides of vision and language. For the training, we propose multi-scale matching losses from both global and local perspectives, and penalize mismatched phrases. Experimental results on MS-COCO and Flickr30K show the effectiveness of our approach compared to some state-of-the-art models.



rate research

Read More

We address the problem of phrase grounding by lear ing a multi-level common semantic space shared by the textual and visual modalities. We exploit multiple levels of feature maps of a Deep Convolutional Neural Network, as well as contextualized word and sentence embeddings extracted from a character-based language model. Following dedicated non-linear mappings for visual features at each level, word, and sentence embeddings, we obtain multiple instantiations of our common semantic space in which comparisons between any target text and the visual content is performed with cosine similarity. We guide the model by a multi-level multimodal attention mechanism which outputs attended visual features at each level. The best level is chosen to be compared with text content for maximizing the pertinence scores of image-sentence pairs of the ground truth. Experiments conducted on three publicly available datasets show significant performance gains (20%-60% relative) over the state-of-the-art in phrase localization and set a new performance record on those datasets. We provide a detailed ablation study to show the contribution of each element of our approach and release our code on GitHub.
This paper presents a weakly supervised sparse learning approach to the problem of noisily tagged image parsing, or segmenting all the objects within a noisily tagged image and identifying their categories (i.e. tags). Different from the traditional image parsing that takes pixel-level labels as strong supervisory information, our noisily tagged image parsing is provided with noisy tags of all the images (i.e. image-level labels), which is a natural setting for social image collections (e.g. Flickr). By oversegmenting all the images into regions, we formulate noisily tagged image parsing as a weakly supervised sparse learning problem over all the regions, where the initial labels of each region are inferred from image-level labels. Furthermore, we develop an efficient algorithm to solve such weakly supervised sparse learning problem. The experimental results on two benchmark datasets show the effectiveness of our approach. More notably, the reported surprising results shed some light on answering the question: can image-level labels replace pixel-level labels (hard to access) as supervisory information for image parsing.
Compared with expensive pixel-wise annotations, image-level labels make it possible to learn semantic segmentation in a weakly-supervised manner. Within this pipeline, the class activation map (CAM) is obtained and further processed to serve as a pseudo label to train the semantic segmentation model in a fully-supervised manner. In this paper, we argue that the lost structure information in CAM limits its application in downstream semantic segmentation, leading to deteriorated predictions. Furthermore, the inconsistent class activation scores inside the same object contradicts the common sense that each region of the same object should belong to the same semantic category. To produce sharp prediction with structure information, we introduce an auxiliary semantic boundary detection module, which penalizes the deteriorated predictions. Furthermore, we adopt smoothness loss to encourage prediction inside the object to be consistent. Experimental results on the PASCAL-VOC dataset illustrate the effectiveness of the proposed solution.
With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of these hashing methods are designed to handle simple binary similarity. The complex multilevel semantic structure of images associated with multiple labels have not yet been well explored. Here we propose a deep semantic ranking based method for learning hash functions that preserve multilevel semantic similarity between multi-label images. In our approach, deep convolutional neural network is incorporated into hash functions to jointly learn feature representations and mappings from them to hash codes, which avoids the limitation of semantic representation power of hand-crafted features. Meanwhile, a ranking list that encodes the multilevel similarity information is employed to guide the learning of such deep hash functions. An effective scheme based on surrogate loss is used to solve the intractable optimization problem of nonsmooth and multivariate ranking measures involved in the learning procedure. Experimental results show the superiority of our proposed approach over several state-of-the-art hashing methods in term of ranking evaluation metrics when tested on multi-label image datasets.
In large-scale image retrieval, many indexing methods have been proposed to narrow down the searching scope of retrieval. The features extracted from images usually are of high dimensions or unfixed sizes due to the existence of key points. Most of existing index structures suffer from the dimension curse, the unfixed feature size and/or the loss of semantic similarity. In this paper a new classification-based indexing structure, called Semantic Indexing Structure (SIS), is proposed, in which we utilize the semantic categories rather than clustering centers to create database partitions, such that the proposed index SIS can be combined with feature extractors without the restriction of dimensions. Besides, it is observed that the size of each semantic partition is positively correlated with the semantic distribution of database. Along this way, we found that when the partition number is normalized to five, the proposed algorithm performed very well in all the tests. Compared with state-of-the-art models, SIS achieves outstanding performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا