Do you want to publish a course? Click here

A Digital Forensics Investigation of a Smart Scale IoT Ecosystem

211   0   0.0 ( 0 )
 Added by George Grispos
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The introduction of Internet of Things (IoT) ecosystems into personal homes and businesses prompts the idea that such ecosystems contain residual data, which can be used as digital evidence in court proceedings. However, the forensic examination of IoT ecosystems introduces a number of investigative problems for the digital forensics community. One of these problems is the limited availability of practical processes and techniques to guide the preservation and analysis of residual data from these ecosystems. Focusing on a detailed case study of the iHealth Smart Scale ecosystem, we present an empirical demonstration of practical techniques to recover residual data from different evidence sources within a smart scale ecosystem. We also document the artifacts that can be recovered from a smart scale ecosystem, which could inform a digital (forensic) investigation. The findings in this research provides a foundation for future studies regarding the development of processes and techniques suitable for extracting and examining residual data from IoT ecosystems.



rate research

Read More

IoT devices have been adopted widely in the last decade which enabled collection of various data from different environments. The collected data is crucial in certain applications where IoT devices generate data for critical infrastructure or systems whose failure may result in catastrophic results. Specifically, for such critical applications, data storage poses challenges since the data may be compromised during the storage and the integrity might be violated without being noticed. In such cases, integrity and data provenance are required in order to be able to detect the source of any incident and prove it in legal cases if there is a dispute with the involved parties. To address these issues, blockchain provides excellent opportunities since it can protect the integrity of the data thanks to its distributed structure. However, it comes with certain costs as storing huge amount of data in a public blockchain will come with significant transaction fees. In this paper, we propose a highly cost effective and reliable digital forensics framework by exploiting multiple inexpensive blockchain networks as a temporary storage before the data is committed to Ethereum. To reduce Ethereum costs,we utilize Merkle trees which hierarchically stores hashes of the collected event data from IoT devices. We evaluated the approach on popular blockchains such as EOS, Stellar, and Ethereum by presenting a cost and security analysis. The results indicate that we can achieve significant cost savings without compromising the integrity of the data.
Blockchains and smart contracts are an emerging, promising technology, that has received considerable attention. We use the blockchain technology, and in particular Ethereum, to implement a large-scale event-based Internet of Things (IoT) control system. We argue that the distributed nature of the ledger, as well as, Ethereums capability of parallel execution of replicated smart contracts, provide the sought after automation, generality, flexibility, resilience, and high availability. We design a realistic blockchain-based IoT architecture, using existing technologies while by taking into consideration the characteristics and limitations of IoT devices and applications. Furthermore, we leverage blockchains immutability and Ethereums support for custom tokens to build a robust and efficient token-based access control mechanism. Our evaluation shows that our solution is viable and offers significant security and usability advantages.
Metamodeling is used as a general technique for integrating and defining models from different domains. This technique can be used in diverse application domains, especially for purposes of standardization. Also, this process mainly has a focus on the identification of general concepts that exist in various problem domain and their relations and to solve complexity, interoperability, and heterogeneity aspects of different domains. Several diverse metamodeling development approaches have been proposed in the literature to develop metamodels. Each metamodeling development process has some advantages and disadvantages too. Therefore, the objective of this paper is to provide a comprehensive review of existing metamodeling development approaches and conduct a comparative study among them-eventually selecting the best approach for metamodel development in the perspective of digital forensics.
74 - Yuezun Li , Xin Yang , Pu Sun 2019
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for large-scale datasets. However, current DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5,639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
One of the main issues in digital forensics is the management of evidences. From the time of evidence collection until the time of their exploitation in a legal court, evidences may be accessed by multiple parties involved in the investigation that take temporary their ownership. This process, called Chain of Custody (CoC), must ensure that evidences are not altered during the investigation, despite multiple entities owned them, in order to be admissible in a legal court. Currently digital evidences CoC is managed entirely manually with entities involved in the chain required to fill in documents accompanying the evidence. In this paper, we propose a Blockchain-based Chain of Custody (B-CoC) to dematerialize the CoC process guaranteeing auditable integrity of the collected evidences and traceability of owners. We developed a prototype of B-CoC based on Ethereum and we evaluated its performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا