Do you want to publish a course? Click here

Single-Read Reconstruction for DNA Data Storage Using Transformers

609   0   0.0 ( 0 )
 Added by Eyar Ben-Tolila
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

As the global need for large-scale data storage is rising exponentially, existing storage technologies are approaching their theoretical and functional limits in terms of density and energy consumption, making DNA based storage a potential solution for the future of data storage. Several studies introduced DNA based storage systems with high information density (petabytes/gram). However, DNA synthesis and sequencing technologies yield erroneous outputs. Algorithmic approaches for correcting these errors depend on reading multiple copies of each sequence and result in excessive reading costs. The unprecedented success of Transformers as a deep learning architecture for language modeling has led to its repurposing for solving a variety of tasks across various domains. In this work, we propose a novel approach for single-read reconstruction using an encoder-decoder Transformer architecture for DNA based data storage. We address the error correction process as a self-supervised sequence-to-sequence task and use synthetic noise injection to train the model using only the decoded reads. Our approach exploits the inherent redundancy of each decoded file to learn its underlying structure. To demonstrate our proposed approach, we encode text, image and code-script files to DNA, produce errors with high-fidelity error simulator, and reconstruct the original files from the noisy reads. Our model achieves lower error rates when reconstructing the original data from a single read of each DNA strand compared to state-of-the-art algorithms using 2-3 copies. This is the first demonstration of using deep learning models for single-read reconstruction in DNA based storage which allows for the reduction of the overall cost of the process. We show that this approach is applicable for various domains and can be generalized to new domains as well.



rate research

Read More

62 - Bingzhe Li , Li Ou , David Du 2021
With the rapid increase of available digital data, DNA storage is identified as a storage media with high density and capability of long-term preservation, especially for archival storage systems. However, the encoding density (i.e., how many binary bits can be encoded into one nucleotide) and error handling are two major factors intertwined in DNA storage. Considering encoding density, theoretically, one nucleotide can encode two binary bits (upper bound). However, due to biochemical constraints and other necessary information associated with payload, the encoding densities of various DNA storage systems are much less than this upper bound. Additionally, all existing studies of DNA encoding schemes are based on static analysis and really lack the awareness of dynamically changed digital patterns. Therefore, the gap between the static encoding and dynamic binary patterns prevents achieving a higher encoding density for DNA storage systems. In this paper, we propose a new Digital Pattern-Aware DNA storage system, called DP-DNA, which can efficiently store digital data in DNA storage with high encoding density. DP-DNA maintains a set of encoding codes and uses a digital pattern-aware code (DPAC) to analyze the patterns of a binary sequence for a DNA strand and selects an appropriate code for encoding the binary sequence to achieve a high encoding density. An additional encoding field is added to the DNA encoding format, which can distinguish the encoding scheme used for those DNA strands, and thus we can decode DNA data back to its original digital data. Moreover, to further improve the encoding density, a variable-length scheme is proposed to increase the feasibility of the coding scheme with a high encoding density. Finally, the experimental results indicate that the proposed DP-DNA achieves up to 103.5% higher encoding densities than prior work.
Sequencing a DNA strand, as part of the read process in DNA storage, produces multiple noisy copies which can be combined to produce better estimates of the original strand; this is called trace reconstruction. One can reduce the error rate further by introducing redundancy in the write sequence and this is called coded trace reconstruction. In this paper, we model the DNA storage channel as an insertion-deletion-substitution (IDS) channel and design both encoding schemes and low-complexity decoding algorithms for coded trace reconstruction. We introduce Trellis BMA, a new reconstruction algorithm whose complexity is linear in the number of traces, and compare its performance to previous algorithms. Our results show that it reduces the error rate on both simulated and experimental data. The performance comparisons in this paper are based on a new dataset of traces that will be publicly released with the paper. Our hope is that this dataset will enable research progress by allowing objective comparisons between candidate algorithms.
Based on the BioBricks standard, restriction synthesis is a novel catabolic iterative DNA synthesis method that utilizes endonucleases to synthesize a query sequence from a reference sequence. In this work, the reference sequence is built from shorter subsequences by classifying them as applicable or inapplicable for the synthesis method using three different machine learning methods: Support Vector Machines (SVMs), random forest, and Convolution Neural Networks (CNNs). Before applying these methods to the data, a series of feature selection, curation, and reduction steps are applied to create an accurate and representative feature space. Following these preprocessing steps, three different pipelines are proposed to classify subsequences based on their nucleotide sequence and other relevant features corresponding to the restriction sites of over 200 endonucleases. The sensitivity using SVMs, random forest, and CNNs are 94.9%, 92.7%, 91.4%, respectively. Moreover, each method scores lower in specificity with SVMs, random forest, and CNNs resulting in 77.4%, 85.7%, and 82.4%, respectively. In addition to analyzing these results, the misclassifications in SVMs and CNNs are investigated. Across these two models, different features with a derived nucleotide specificity visually contribute more to classification compared to other features. This observation is an important factor when considering new nucleotide sensitivity features for future studies.
Comparing and aligning large datasets is a pervasive problem occurring across many different knowledge domains. We introduce and study MREC, a recursive decomposition algorithm for computing matchings between data sets. The basic idea is to partition the data, match the partitions, and then recursively match the points within each pair of identified partitions. The matching itself is done using black box matching procedures that are too expensive to run on the entire data set. Using an absolute measure of the quality of a matching, the framework supports optimization over parameters including partitioning procedures and matching algorithms. By design, MREC can be applied to extremely large data sets. We analyze the procedure to describe when we can expect it to work well and demonstrate its flexibility and power by applying it to a number of alignment problems arising in the analysis of single cell molecular data.
The development of long-term data storage technology is one of the urging problems of our time. This paper presents the results of implementation of technical solution for long-term data storage technology proposed a few years ago on the basis of single crystal sapphire. It is shown that the problem of reading data through a substrate of negative single crystal sapphire can be solved by using for reading a special optical system with a plate of positive single crystal quartz. The experimental results confirm the efficiency of the proposed method of compensation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا