Do you want to publish a course? Click here

The $g_T(x)$ contribution to single spin asymmetries in SIDIS

100   0   0.0 ( 0 )
 Added by Sanjin Beni\\'c
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by a novel origin of transverse single spin asymmetry (SSA) in semi-inclusive Deep Inelastic Scattering (SIDIS) uncovered by some of us, we quantitatively investigate its impact on the theoretical understanding of the mechanism responsible for SSA. This new contribution from the quark-initiated channel first appears in two-loop perturbation theory and involves the $g_T(x)$ distribution. We point out another entirely analogous piece from the gluon-initiated channel proportional to the gluon helicity distribution $Delta G(x)$. Both contributions are solely expressed in terms of twist-two polarized parton distribution functions and twist-two fragmentation functions in the Wandzura-Wilczek approximation, such that they can be unambiguously evaluated without introducing free parameters. We make predictions for measurements of the asymmetries $A_{UT}$ at the future Electron-Ion Collider (EIC), and find that $A_{UT}$ associated with the $sin (phi_h-phi_S)$, $sin phi_S$ and $sin (2phi_h-phi_S)$ harmonics can reach up to 1-2% even at the top EIC energy.



rate research

Read More

Hadron leptoproduction in Semi-Inclusive measurements of Deep-Inelastic Scattering (SIDIS) on unpolarised nucleons allows one to get information on the intrinsic transverse momentum of quarks in a nucleon and on the Boer-Mulders function through the measurement of azimuthal modulations in the cross section. These modulations were recently measured by the HERMES experiment at DESY on proton and deuteron targets, and by the COMPASS experiment using the CERN SPS muon beam and a $^6$LiD target. In both cases, the amplitudes of the $cosphi_h$ and $cos 2phi_h$ modulations show strong kinematic dependences for both positive and negative hadrons. It has been known since some time that the measured final-state hadrons in those SIDIS experiments receive a contribution from exclusive diffractive production of vector mesons, particularly important at large values of $z$, the fraction of the virtual photon energy carried by the hadron. In previous measurements of azimuthal asymmetries this contribution was not taken into account, because it was not known that it could distort the azimuthal modulations. Presently, a method to evaluate the contribution of the exclusive reactions to the azimuthal asymmetries measured by COMPASS has been developed. The subtraction of this contribution results in a better understanding of the kinematic effects, and the remaining non-zero $cos 2phi_h$ modulation gives indication for a non-zero Boer-Mulders effect.
136 - M. Boglione 2007
In a perturbative QCD approach, with inclusion of spin and transverse momentum effects, experimental data on azimuthal asymmetries observed in polarized semi-inclusive deeply inelastic scattering and e+ e- annihilations can be used to determine the Sivers, transversity and Collins soft functions. By using these functions, within the same scheme, we predict p(transv. polarized) p -> h + X single spin asymmetries in remarkable agreement with RHIC experimental data.
In this paper we perform the first simultaneous QCD global analysis of data from semi-inclusive deep inelastic scattering, Drell-Yan, $e^+e^-$ annihilation into hadron pairs, and proton-proton collisions. Consequently, we are able to extract a universal set of non-perturbative functions that describes the observed asymmetries in these reactions. The outcome of our analysis indicates single transverse-spin asymmetries in high-energy collisions have a common origin. Furthermore, we achieve the first phenomenological agreement with lattice QCD on the up and down quark tensor charges.
We analyze the longitudinal-transverse double-spin asymmetry in lepton-nucleon collisions where a single hadron is detected in the final state, i.e., $vec{ell},N^uparrow rightarrow h,X$. This is a subleading-twist observable in collinear factorization, and we look at twist-3 effects in both the transversely polarized nucleon and the unpolarized outgoing hadron. Results are anticipated for this asymmetry from both HERMES and Jefferson Lab Hall A, and it could be measured as well at COMPASS and a future Electron-Ion Collider. We also perform a numerical study of the distribution term, which, when compared to upcoming experimental results, could allow one to learn about the worm-gear-type function $tilde{g}(x)$ as well as assess the role of quark-gluon-quark correlations in the initial-state nucleon and twist-3 effects in the fragmenting unpolarized hadron.
The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003<x<0.7. These new measurements confirm with higher accuracy previous measurements from the COMPASS and HERMES collaborations, which exhibit a definite effect in the valence quark region. The asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا