Do you want to publish a course? Click here

Learning from Language Description: Low-shot Named Entity Recognition via Decomposed Framework

378   0   0.0 ( 0 )
 Added by Yaqing Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we study the problem of named entity recognition (NER) in a low resource scenario, focusing on few-shot and zero-shot settings. Built upon large-scale pre-trained language models, we propose a novel NER framework, namely SpanNER, which learns from natural language supervision and enables the identification of never-seen entity classes without using in-domain labeled data. We perform extensive experiments on 5 benchmark datasets and evaluate the proposed method in the few-shot learning, domain transfer and zero-shot learning settings. The experimental results show that the proposed method can bring 10%, 23% and 26% improvements in average over the best baselines in few-shot learning, domain transfer and zero-shot learning settings respectively.

rate research

Read More

Named Entity Recognition (NER) in Few-Shot setting is imperative for entity tagging in low resource domains. Existing approaches only learn class-specific semantic features and intermediate representations from source domains. This affects generalizability to unseen target domains, resulting in suboptimal performances. To this end, we present CONTaiNER, a novel contrastive learning technique that optimizes the inter-token distribution distance for Few-Shot NER. Instead of optimizing class-specific attributes, CONTaiNER optimizes a generalized objective of differentiating between token categories based on their Gaussian-distributed embeddings. This effectively alleviates overfitting issues originating from training domains. Our experiments in several traditional test domains (OntoNotes, CoNLL03, WNUT 17, GUM) and a new large scale Few-Shot NER dataset (Few-NERD) demonstrate that on average, CONTaiNER outperforms previous methods by 3%-13% absolute F1 points while showing consistent performance trends, even in challenging scenarios where previous approaches could not achieve appreciable performance.
233 - Meihan Tong , Shuai Wang , Bin Xu 2021
Few-shot Named Entity Recognition (NER) exploits only a handful of annotations to identify and classify named entity mentions. Prototypical network shows superior performance on few-shot NER. However, existing prototypical methods fail to differentiate rich semantics in other-class words, which will aggravate overfitting under few shot scenario. To address the issue, we propose a novel model, Mining Undefined Classes from Other-class (MUCO), that can automatically induce different undefined classes from the other class to improve few-shot NER. With these extra-labeled undefined classes, our method will improve the discriminative ability of NER classifier and enhance the understanding of predefined classes with stand-by semantic knowledge. Experimental results demonstrate that our model outperforms five state-of-the-art models in both 1-shot and 5-shots settings on four NER benchmarks. We will release the code upon acceptance. The source code is released on https: //github.com/shuaiwa16/OtherClassNER.git.
Recently, considerable literature has grown up around the theme of few-shot named entity recognition (NER), but little published benchmark data specifically focused on the practical and challenging task. Current approaches collect existing supervised NER datasets and re-organize them to the few-shot setting for empirical study. These strategies conventionally aim to recognize coarse-grained entity types with few examples, while in practice, most unseen entity types are fine-grained. In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Few-NERD consists of 188,238 sentences from Wikipedia, 4,601,160 words are included and each is annotated as context or a part of a two-level entity type. To the best of our knowledge, this is the first few-shot NER dataset and the largest human-crafted NER dataset. We construct benchmark tasks with different emphases to comprehensively assess the generalization capability of models. Extensive empirical results and analysis show that Few-NERD is challenging and the problem requires further research. We make Few-NERD public at https://ningding97.github.io/fewnerd/.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25% of the original training data.
85 - Zhifeng Hao , Di Lv , Zijian Li 2020
Named entity recognition (NER) for identifying proper nouns in unstructured text is one of the most important and fundamental tasks in natural language processing. However, despite the widespread use of NER models, they still require a large-scale labeled data set, which incurs a heavy burden due to manual annotation. Domain adaptation is one of the most promising solutions to this problem, where rich labeled data from the relevant source domain are utilized to strengthen the generalizability of a model based on the target domain. However, the mainstream cross-domain NER models are still affected by the following two challenges (1) Extracting domain-invariant information such as syntactic information for cross-domain transfer. (2) Integrating domain-specific information such as semantic information into the model to improve the performance of NER. In this study, we present a semi-supervised framework for transferable NER, which disentangles the domain-invariant latent variables and domain-specific latent variables. In the proposed framework, the domain-specific information is integrated with the domain-specific latent variables by using a domain predictor. The domain-specific and domain-invariant latent variables are disentangled using three mutual information regularization terms, i.e., maximizing the mutual information between the domain-specific latent variables and the original embedding, maximizing the mutual information between the domain-invariant latent variables and the original embedding, and minimizing the mutual information between the domain-specific and domain-invariant latent variables. Extensive experiments demonstrated that our model can obtain state-of-the-art performance with cross-domain and cross-lingual NER benchmark data sets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا