Shephards inequalities, Hodge-Riemann relations, and a conjecture of Fedotov


Abstract in English

A well-known family of determinantal inequalities for mixed volumes of convex bodies were derived by Shephard from the Alexandrov-Fenchel inequality. The classic monograph Geometric Inequalities by Burago and Zalgaller states a conjecture on the validity of higher-order analogues of Shephards inequalities, which is attributed to Fedotov. In this note we disprove Fedotovs conjecture by showing that it contradicts the Hodge-Riemann relations for simple convex polytopes. Along the way, we make some expository remarks on the linear algebraic and geometric aspects of these inequalities.

Download