No Arabic abstract
It has long been understood that non-trivial Conformal Field Theories (CFTs) with vanishing central charge ($c=0$) are logarithmic. So far however, the structure of the identity module -- the (left and right) Virasoro descendants of the identity field -- had not been elucidated beyond the stress-energy tensor $T$ and its logarithmic partner $t$ (the solution of the $cto 0$ catastrophe). In this paper, we determine this structure together with the associated OPE of primary fields up to level $h=bar{h}=2$ for polymers and percolation CFTs. This is done by taking the $cto 0$ limit of $O(n)$ and Potts models and combining recent results from the bootstrap with arguments based on conformal invariance and self-duality. We find that the structure contains a rank-3 Jordan cell involving the field $Tbar{T}$, and is identical for polymers and percolation. It is characterized in part by the common value of a non-chiral logarithmic coupling $a_0=-{25over 48}$.
The periodic sl(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c=0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace $mathbb{CP}^{1|1} = mathrm{U}(2|1) / (mathrm{U}(1) times mathrm{U}(1|1))$, and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [N. Read and H. Saleur, Nucl. Phys. B 777 316 (2007)]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.
We discuss the connections between the complex SYK model at the conformal limit and warped conformal field theories. Both theories have an $SL(2,R) times U(1)$ global symmetry. We present comparisons on symmetries, correlation functions, the effective action and the entropy formula. We also use modular covariance to reinterpret results in the complex SYK model.
In this letter, we discuss certain universal predictions of the large charge expansion in conformal field theories with $U(1)$ symmetry, mainly focusing on four-dimensional theories. We show that, while in three dimensions quantum fluctuations are responsible for the existence of a theory-independent $Q^0$ term in the scaling dimension $Delta_Q$ of the lightest operator with fixed charge $Qgg 1$, in four dimensions the same mechanism provides a universal $Q^0log Q$ correction to $Delta_Q$. Previous works discussing four-dimensional theories failed in identifying this term. We also compute the first subleading correction to the OPE coefficient corresponding to the insertion of an arbitrary primary operator with small charge $qll Q$ in between the minimal energy states with charge $Q$ and $Q+q$, both in three and four dimensions. This contribution does not depend on the operator insertion and, similarly to the quantum effects in $Delta_Q$, in four dimensions it scales logarithmically with $Q$.
We study some aspects of conformal field theories at finite temperature in momentum space. We provide a formula for the Fourier transform of a thermal conformal block and study its analytic properties. In particular we show that the Fourier transform vanishes when the conformal dimension and spin are those of a double twist operator $Delta = 2Delta_phi + ell + 2n$. By analytically continuing to Lorentzian signature we show that the spectral density at high spatial momenta has support on the spectrum condition $|omega| > |k|$. This leads to a series of sum rules. Finally, we explicitly match the thermal block expansion with the momentum space Greens function at finite temperature in several examples.
The light cone OPE limit provides a significant amount of information regarding the conformal field theory (CFT), like the high-low temperature limit of the partition function. We started with the light cone bootstrap in the {it general} CFT ${}_2$ with $c>1$. For this purpose, we needed an explicit asymptotic form of the Virasoro conformal blocks in the limit $z to 1$, which was unknown until now. In this study, we computed it in general by studying the pole structure of the {it fusion matrix} (or the crossing kernel). Applying this result to the light cone bootstrap, we obtained the universal total twist (or equivalently, the universal binding energy) of two particles at a large angular momentum. In particular, we found that the total twist is saturated by the value $frac{c-1}{12}$ if the total Liouville momentum exceeds beyond the {it BTZ threshold}. This might be interpreted as a black hole formation in AdS${}_3$. As another application of our light cone singularity, we studied the dynamics of entanglement after a global quench and found a Renyi phase transition as the replica number was varied. We also investigated the dynamics of the 2nd Renyi entropy after a local quench. We also provide a universal form of the Regge limit of the Virasoro conformal blocks from the analysis of the light cone singularity. This Regge limit is related to the general $n$-th Renyi entropy after a local quench and out of time ordered correlators.