Point-wise Self-similar Solution for Spiral Shocks in Accretion Disk with Mass Outflow in Binary


Abstract in English

We examine the properties of spiral shocks from a steady, adiabatic, non-axisymmetric accretion disk around a compact star in binary. We first time incorporate all the possible influences from binary through adopting the Roche potential and Coriolis forces in the basic conservation equations. In this paper, we assume the spiral shocks to be point-wise self-similar, and the flow is in vertical hydrostatic equilibrium to simplify the study. We also investigate the mass outflow due to the shock compression and apply it to the accreting white dwarf in binary. We find that our model will be beneficial to overcome the ad hoc assumption of optically thick wind generally used in the studies of the progenitor of supernovae Ia.

Download