Do you want to publish a course? Click here

BiSECT: Learning to Split and Rephrase Sentences with Bitexts

103   0   0.0 ( 0 )
 Added by Reno Kriz
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

An important task in NLP applications such as sentence simplification is the ability to take a long, complex sentence and split it into shorter sentences, rephrasing as necessary. We introduce a novel dataset and a new model for this `split and rephrase task. Our BiSECT training data consists of 1 million long English sentences paired with shorter, meaning-equivalent English sentences. We obtain these by extracting 1-2 sentence alignments in bilingual parallel corpora and then using machine translation to convert both sides of the corpus into the same language. BiSECT contains higher quality training examples than previous Split and Rephrase corpora, with sentence splits that require more significant modifications. We categorize examples in our corpus, and use these categories in a novel model that allows us to target specific regions of the input sentence to be split and edited. Moreover, we show that models trained on BiSECT can perform a wider variety of split operations and improve upon previous state-of-the-art approaches in automatic and human evaluations.

rate research

Read More

Splitting and rephrasing a complex sentence into several shorter sentences that convey the same meaning is a challenging problem in NLP. We show that while vanilla seq2seq models can reach high scores on the proposed benchmark (Narayan et al., 2017), they suffer from memorization of the training set which contains more than 89% of the unique simple sentences from the validation and test sets. To aid this, we present a new train-development-test data split and neural models augmented with a copy-mechanism, outperforming the best reported baseline by 8.68 BLEU and fostering further progress on the task.
We use reinforcement learning to learn tree-structured neural networks for computing representations of natural language sentences. In contrast with prior work on tree-structured models in which the trees are either provided as input or predicted using supervision from explicit treebank annotations, the tree structures in this work are optimized to improve performance on a downstream task. Experiments demonstrate the benefit of learning task-specific composition orders, outperforming both sequential encoders and recursive encoders based on treebank annotations. We analyze the induced trees and show that while they discover some linguistically intuitive structures (e.g., noun phrases, simple verb phrases), they are different than conventional English syntactic structures.
70 - Qingyu Zhou , Nan Yang , Furu Wei 2018
Sentence scoring and sentence selection are two main steps in extractive document summarization systems. However, previous works treat them as two separated subtasks. In this paper, we present a novel end-to-end neural network framework for extractive document summarization by jointly learning to score and select sentences. It first reads the document sentences with a hierarchical encoder to obtain the representation of sentences. Then it builds the output summary by extracting sentences one by one. Different from previous methods, our approach integrates the selection strategy into the scoring model, which directly predicts the relative importance given previously selected sentences. Experiments on the CNN/Daily Mail dataset show that the proposed framework significantly outperforms the state-of-the-art extractive summarization models.
Atomic clauses are fundamental text units for understanding complex sentences. Identifying the atomic sentences within complex sentences is important for applications such as summarization, argument mining, discourse analysis, discourse parsing, and question answering. Previous work mainly relies on rule-based methods dependent on parsing. We propose a new task to decompose each complex sentence into simple sentences derived from the tensed clauses in the source, and a novel problem formulation as a graph edit task. Our neural model learns to Accept, Break, Copy or Drop elements of a graph that combines word adjacency and grammatical dependencies. The full processing pipeline includes modules for graph construction, graph editing, and sentence generation from the output graph. We introduce DeSSE, a new dataset designed to train and evaluate complex sentence decomposition, and MinWiki, a subset of MinWikiSplit. ABCD achieves comparable performance as two parsing baselines on MinWiki. On DeSSE, which has a more even balance of complex sentence types, our model achieves higher accuracy on the number of atomic sentences than an encoder-decoder baseline. Results include a detailed error analysis.
Sentences with gapping, such as Paul likes coffee and Mary tea, lack an overt predicate to indicate the relation between two or more arguments. Surface syntax representations of such sentences are often produced poorly by parsers, and even if correct, not well suited to downstream natural language understanding tasks such as relation extraction that are typically designed to extract information from sentences with canonical clause structure. In this paper, we present two methods for parsing to a Universal Dependencies graph representation that explicitly encodes the elided material with additional nodes and edges. We find that both methods can reconstruct elided material from dependency trees with high accuracy when the parser correctly predicts the existence of a gap. We further demonstrate that one of our methods can be applied to other languages based on a case study on Swedish.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا