The ring R of real-exponent polynomials in n variables over any field has global dimension n+1 and flat dimension n. In particular, the residue field k = R/m of R modulo its maximal graded ideal m has flat dimension n via a Koszul-like resolution. Projective and flat resolutions of all R-modules are constructed from this resolution of k. The same results hold when R is replaced by the monoid algebra for the positive cone of any subgroup of $mathbb{R}^n$ satisfying a mild density condition.