A Dynamic Scheduling Policy for a Network with Heterogeneous Time-Sensitive Traffic


Abstract in English

In 5G and beyond systems, the notion of latency gets a great momentum in wireless connectivity as a metric for serving real-time communications requirements. However, in many applications, research has pointed out that latency could be inefficient to handle applications with data freshness requirements. Recently, the notion of Age of Information (AoI) that can capture the freshness of the data has attracted a lot of attention. In this work, we consider mixed traffic with time-sensitive users; a deadline-constrained user, and an AoI-oriented user. To develop an efficient scheduling policy, we cast a novel optimization problem formulation for minimizing the average AoI while satisfying the timely throughput constraints. The formulated problem is cast as a Constrained Markov Decision Process (CMDP). We relax the constrained problem to an unconstrained Markov Decision Process (MDP) problem by utilizing Lyapunov optimization theory and it can be proved that it is solved per frame by applying backward dynamic programming algorithms with optimality guarantees. Simulation results show that the timely throughput constraints are satisfied while minimizing the average AoI. Also, simulation results show the convergence of the algorithm for different values of the weighted factor and the trade-off between the AoI and the timely throughput.

Download