We specialise the construction of orbifold graph TQFTs introduced in Carqueville et al., arXiv:2101.02482 to Reshetikhin-Turaev defect TQFTs. We explain that the modular fusion category ${mathcal{C}}_{mathcal{A}}$ constructed in Muleviv{c}ius-Runkel, arXiv:2002.00663 from an orbifold datum $mathcal{A}$ in a given modular fusion category $mathcal{C}$ is a special case of the Wilson line ribbon categories introduced as part of the general theory of orbifold graph TQFTs. Using this, we prove that the Reshetikhin-Turaev TQFT obtained from ${mathcal{C}}_{mathcal{A}}$ is equivalent to the orbifold of the TQFT for $mathcal{C}$ with respect to the orbifold datum $mathcal{A}$.