Do you want to publish a course? Click here

ATOMIUM: Halide molecules around the S-type AGB star W Aquilae

92   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

S-type asymptotic giant branch (AGB) stars are thought to be intermediates in the evolution of oxygen- to carbon-rich AGB stars. The chemical compositions of their circumstellar envelopes are also intermediate, but have not been studied in as much detail as their carbon- and oxygen-rich counterparts. We aim to determine the abundances of AlCl and AlF from rotational lines, which have been observed for the first time towards an S-type AGB star, W Aql. In combination with models based on PACS observations, we aim to update our chemical kinetics network based on these results. We analyse ALMA observations towards W Aql of AlCl in the ground and first two vibrationally excited states and AlF in the ground vibrational state. Using radiative transfer models, we determine the abundances and spatial abundance distributions of Al$^{35}$Cl, Al$^{37}$Cl, and AlF. We also model HCl and HF emission and compare these models to PACS spectra to constrain the abundances of these species. AlCl is found in clumps very close to the star, with emission confined within 0.1$^{primeprime}$ of the star. AlF emission is more extended, with faint emission extending 0.2$^{primeprime}$ to 0.6$^{primeprime}$ from the continuum peak. We find peak abundances, relative to H$_2$, of $1.7times 10^{-7}$ for Al$^{35}$Cl, $7times 10^{-8}$ for Al$^{37}$Cl and $1times 10^{-7}$ for AlF. From the PACS spectra, we find abundances of $9.7times 10^{-8}$ and $leq 10^{-8}$, relative to H$_2$, for HCl and HF, respectively. The AlF abundance exceeds the solar F abundance, indicating that fluorine synthesised in the AGB star has already been dredged up to the surface of the star and ejected into the circumstellar envelope. From our analysis of chemical reactions in the wind, we conclude that AlF may participate in the dust formation process, but we cannot fully explain the rapid depletion of AlCl seen in the wind.



rate research

Read More

The CO(J=3-2) emission from the CSE of the binary S-type AGB star W Aql has been observed at subarcsecond resolution using ALMA. The aim of this paper is to investigate the wind properties of the AGB star and to analyse how the known companion has shaped the CSE. The average mass-loss rate during the creation of the detected CSE is estimated through modelling, using the ALMA brightness distribution and previously published single-dish measurements as observational constraints. The ALMA observations are presented and compared to the results from a 3D smoothed particle hydrodynamics (SPH) binary interaction model with the same properties as the W Aql system and with two different orbital eccentricities. Three-dimensional radiative transfer modelling is performed and the response of the interferometer is modelled and discussed. The estimated average mass-loss rate of W~Aql agrees with previous results. The size of the emitting region is consistent with photodissociation models. The CO(J=3-2) emission is dominated by a smooth component overlayed with two weak arc patterns with different separations. The larger pattern is predicted by the binary interaction model with separations of 10 and therefore likely due to the known companion. It is consistent with a binary orbit with low eccentricity. The smaller separation pattern is asymmetric and coincides with the dust distribution, but the separation timescale (200 yrs) is not consistent with any known process of the system. The separation of the known companions of the system is large enough to not have a very strong effect on the circumstellar morphology. The density contrast across the envelope of a binary with an even larger separation will not be easily detectable, even with ALMA, unless the orbit is strongly asymmetric or the AGB star has a much larger mass-loss rate.
352 - E. De Beck , H. Olofsson 2020
W Aql is an asymptotic giant branch (AGB) star with an atmospheric elemental abundance ratio C/O$approx$0.98 and reported circumstellar molecular abundances intermediate between those of M-type (C/O$<$1) and C-type (C/O$>$1) AGB stars. This intermediate status is considered typical for S-type stars, although our understanding of the chemical content of their circumstellar envelopes (CSEs) is currently rather limited. We performed observations in the frequency range 159-268 GHz with the APEX telescope and make abundance estimates through comparison to available spectra towards some well-studied AGB stars and based on rotational diagram analysis in the case of SiC2. We conclude that W Aqls CSE appears considerably closer to that of a C-type AGB star than to that of an M-type AGB star. In particular, we detect emission from C2H, SiC2, SiN, and HC3N, molecules previously only detected towards the CSEs of C-type stars. This conclusion, based on the chemistry of the gaseous component of the CSE, is further supported by reports in the literature on the presence of atmospheric molecular bands and spectral features of dust species typical for C-type AGB stars. Although our observations mainly trace species in the outer regions of the CSE, our conclusion matches closely that based on recent chemical equilibrium models for the inner wind of S-type stars: the atmospheric and circumstellar chemistry of S-type stars likely resembles that of C-type AGB stars much more closely than that of M-type AGB stars. Further observational investigation of the gaseous circumstellar chemistry of S-type stars is required to characterise its dependence on the atmospheric C/O. Non-equilibrium chemical models of the CSEs of AGB stars need to address the particular class of S-type stars and the chemical variety that is induced by the range in atmospheric C/O.
ALMA observations of CO(1-0) and CO(2-1) emissions of the circumstellar envelope of EP Aqr, an oxygen-rich AGB star, are reported. A thorough analysis of their properties is presented using an original method based on the separation of the data-cube into a low velocity component associated with an equatorial outflow and a faster component associated with a bipolar outflow. A number of important and new results are obtained concerning the distribution in space of the effective emissivity, the temperature, the density and the flux of matter. A mass loss rate of (1.6$pm$0.4)10$^{-7}$ solar masses per year is measured. The main parameters defining the morphology and kinematics of the envelope are evaluated and uncertainties inherent to de-projection are critically discussed. Detailed properties of the equatorial region of the envelope are presented including a measurement of the line width and a precise description of the observed inhomogeneity of both morphology and kinematics. In particular, in addition to the presence of a previously observed spiral enhancement of the morphology at very small Doppler velocities, a similarly significant but uncorrelated circular enhancement of the expansion velocity is revealed, both close to the limit of sensitivity. The results of the analysis place significant constraints on the parameters of models proposing descriptions of the mass loss mechanism, but cannot choose among them with confidence.
We analyse ALMA observations of the 12CO(3-2) emission of the circumstellar envelope (CSE) of the Mira variable binary star W Aql. These provide, for the first time, spatially resolved Doppler velocity spectra of the CSE up to angular distances to the central star of ~ 5 (meaning some 2000 AU). The exploratory nature of the observations (only five minutes in each of two different configurations) does not allow for a detailed modelling of the properties of the CSE but provides important qualitative information on its morphology and kinematics. Emission is found to be enhanced along an axis moving from east/west to north-east/south-west when the angular distance from the central star projected on the plane of the sky increases from zero to four arcseconds. In parallel, the Doppler velocity distribution displays asymmetry along an axis moving from east/west to north-west/south-east. The results are discussed in the context of earlier observations, in particular of the dust morphology.
We present the highest angular resolution (20x15mas - 44x33au) Atacama Large Millimeter/sub-millimeter Array (ALMA) observations currently possible of the proto-O-star G17.64+0.16 in Band 6. The Cycle 5 observations with baselines out to 16km probes scales <50au and reveal the rotating disc around G17.64+0.16, a massive forming O-type star. The disc has a ring-like enhancement in the dust emission, especially visible as arc structures to the north and south. The Keplerian kinematics are most prominently seen in the vibrationally excited water line, H2O (Eu=3461.9K). The mass of the central source found by modelling the Keplerian rotation is consistent with 45+/-10Mo. The H30alpha (231.9GHz) radio-recombination line and the SiO (5-4) molecular line were detected at up to the 10 sigma$ level. The estimated disc mass is 0.6-2.6Mo under the optically thin assumption. Analysis of the Toomre Q parameter, in the optically thin regime, indicates that the disc stability is highly dependent on temperature. The disc currently appears stable for temperatures >150K, this does not preclude that the substructures formed earlier through disc fragmentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا