Do you want to publish a course? Click here

Adjacency eigenvalues of graphs without short odd cycles

144   0   0.0 ( 0 )
 Added by Shuchao Li
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

It is well known that spectral Tur{a}n type problem is one of the most classical {problems} in graph theory. In this paper, we consider the spectral Tur{a}n type problem. Let $G$ be a graph and let $mathcal{G}$ be a set of graphs, we say $G$ is textit{$mathcal{G}$-free} if $G$ does not contain any element of $mathcal{G}$ as a subgraph. Denote by $lambda_1$ and $lambda_2$ the largest and the second largest eigenvalues of the adjacency matrix $A(G)$ of $G,$ respectively. In this paper we focus on the characterization of graphs without short odd cycles according to the adjacency eigenvalues of the graphs. Firstly, an upper bound on $lambda_1^{2k}+lambda_2^{2k}$ of $n$-vertex ${C_3,C_5,ldots,C_{2k+1}}$-free graphs is established, where $k$ is a positive integer. All the corresponding extremal graphs are identified. Secondly, a sufficient condition for non-bipartite graphs containing an odd cycle of length at most $2k+1$ in terms of its spectral radius is given. At last, we characterize the unique graph having the maximum spectral radius among the set of $n$-vertex non-bipartite graphs with odd girth at least $2k+3,$ which solves an open problem proposed by Lin, Ning and Wu [Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2) (2021) 258-270].



rate research

Read More

Let $mathscr{G}$ be the class of plane graphs without triangles normally adjacent to $8^{-}$-cycles, without $4$-cycles normally adjacent to $6^{-}$-cycles, and without normally adjacent $5$-cycles. In this paper, it is showed that every graph in $mathscr{G}$ is $3$-choosable. Instead of proving this result, we directly prove a stronger result in the form of weakly DP-$3$-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without $4$-, $6$-, $8$-cycles is $3$-choosable, and every planar graph without $4$-, $5$-, $7$-, $8$-cycles is $3$-choosable. In the third section, it is proved that the vertex set of every graph in $mathscr{G}$ can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is considered.
Let $F_{a_1,dots,a_k}$ be a graph consisting of $k$ cycles of odd length $2a_1+1,dots, 2a_k+1$, respectively which intersect in exactly a common vertex, where $kgeq1$ and $a_1ge a_2ge cdotsge a_kge 1$. In this paper, we present a sharp upper bound for the signless Laplacian spectral radius of all $F_{a_1,dots,a_k}$-free graphs and characterize all extremal graphs which attain the bound. The stability methods and structure of graphs associated with the eigenvalue are adapted for the proof.
Graham and Pollak showed that the vertices of any graph $G$ can be addressed with $N$-tuples of three symbols, such that the distance between any two vertices may be easily determined from their addresses. An addressing is optimal if its length $N$ is minimum possible. In this paper, we determine an addressing of length $k(n-k)$ for the Johnson graphs $J(n,k)$ and we show that our addressing is optimal when $k=1$ or when $k=2, n=4,5,6$, but not when $n=6$ and $k=3$. We study the addressing problem as well as a variation of it in which the alphabet used has more than three symbols, for other graphs such as complete multipartite graphs and odd cycles. We also present computations describing the distribution of the minimum length of addressings for connected graphs with up to $10$ vertices. Motivated by these computations we settle a problem of Graham, showing that most graphs on $n$ vertices have an addressing of length at most $n-(2-o(1))log_2 n$.
131 - Vladimir Nikiforov 2007
We give a sharp spectral condition for the existence of odd cycles in a graph of given order. We also prove a related stability result.
Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We prove that the same hypothesis ensures a rainbow $ell$-cycle $C_{ell}$ whenever $n ge 432 ell$. This result is sharp for all odd integers $ell geq 3$, and extends earlier work of the authors for when $ell$ is even.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا