Do you want to publish a course? Click here

Molecular Laser-Cooling in a Dynamically Tunable Repulsive Optical Trap

86   0   0.0 ( 0 )
 Added by Yukai Lu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent work with laser-cooled molecules in attractive optical traps has shown that the differential AC Stark shifts arising from the trap light itself can become problematic, limiting collisional shielding efficiencies, rotational coherence times, and laser-cooling temperatures. In this work, we explore trapping and laser-cooling of CaF molecules in a ring-shaped repulsive optical trap. The observed dependences of loss rates on temperature and barrier height show characteristic behavior of repulsive traps and indicate strongly suppressed average AC Stark shifts. Within the trap, we find that $Lambda$-enhanced gray molasses cooling is effective, producing similar minimum temperatures as those obtained in free space. By combining in-trap laser cooling with dynamical reshaping of the trap, we also present a method that allows highly efficient and rapid transfer from molecular magneto-optical traps into conventional attractive optical traps, which has been an outstanding challenge for experiments to date. Notably, our method could allow nearly lossless transfer over millisecond timescales.



rate research

Read More

We present a method for producing three-dimensional Bose-Einstein condensates using only laser cooling. The phase transition to condensation is crossed with $2.5 {times} 10^{4}$ $^{87}mathrm{Rb}$ atoms at a temperature of $T_{mathrm{c}} = 0.6 mumathrm{K}$ after 1.4 s of cooling. Atoms are trapped in a crossed optical dipole trap and cooled using Raman cooling with far-off-resonant optical pumping light to reduce atom loss and heating. The achieved temperatures are well below the effective recoil temperature. We find that during the final cooling stage at atomic densities above $10^{14} mathrm{cm}^{-3}$, careful tuning of trap depth and optical-pumping rate is necessary to evade heating and loss mechanisms. The method may enable the fast production of quantum degenerate gases in a variety of systems including fermions.
In recent years, cold atoms could prove their scientific impact not only on ground but in microgravity environments such as the drop tower in Bremen, sounding rockets and parabolic flights. We investigate the preparation of cold atoms in an optical dipole trap, with an emphasis on evaporative cooling under microgravity. Up to $ 1times10^{6} $ rubidium-87 atoms were optically trapped from a temporarily dark magneto optical trap during free fall in the droptower in Bremen. The efficiency of evaporation is determined to be equal with and without the effect of gravity. This is confirmed using numerical simulations that prove the dimension of evaporation to be three-dimensional in both cases due to the anharmonicity of optical potentials. These findings pave the way towards various experiments on ultra-cold atoms under microgravity and support other existing experiments based on atom chips but with plans for additional optical dipole traps such as the upcoming follow-up missions to current and past spaceborne experiments.
123 - Y. Li , J. Wu , G. Feng 2015
We report enhanced three-dimensional degenerated Raman sideband cooling (3D DRSC) of caesium (Cs) atoms in a standard single-cell vapour-loading magneto-optical trap. Our improved scheme involves using a separate repumping laser and optimized lattice detuning. We load $1.5 times 10^7$ atoms into the Raman lattice with a detuning of -15.5 GHz (to the ground F = 3 state). Enhanced 3D DRSC is used to cool them from 60 $mu$K to 1.7 $mu$K within 12 ms and the number of obtained atoms is about $1.2 times 10^7$. A theoretical model is proposed to simulate the measured number of trapped atoms. The result shows good agreement with the experimental data. The technique paves the way for loading a large number of ultracold Cs atoms into a crossed dipole trap and efficient evaporative cooling in a single-cell system.
132 - Guillaume Stern 2010
We demonstrate a compact laser source suitable for the trapping and cooling of potassium. By frequency doubling a fiber laser diode at 1534 nm in a waveguide, we produce 767 nm laser light. A current modulation of the diode allows to generate the two required frequencies for cooling in a simple and robust apparatus. We successfully used this laser source to trap ^39 K.
124 - M. Landini , S. Roy , L. Carcagni 2011
We investigate sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of systems and an adiabatic ramping of the laser parameters allows to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25(3)microK and 47(5)microK in high-density samples of the two isotopes 39K and 41K, respectively. Our findings will find application to other atomic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا