Ergodic Limits, Relaxations, and Geometric Properties of Random Walk Node Embeddings


Abstract in English

Random walk based node embedding algorithms learn vector representations of nodes by optimizing an objective function of node embedding vectors and skip-bigram statistics computed from random walks on the network. They have been applied to many supervised learning problems such as link prediction and node classification and have demonstrated state-of-the-art performance. Yet, their properties remain poorly understood. This paper studies properties of random walk based node embeddings in the unsupervised setting of discovering hidden block structure in the network, i.e., learning node representations whose cluster structure in Euclidean space reflects their adjacency structure within the network. We characterize the ergodic limits of the embedding objective, its generalization, and related convex relaxations to derive corresponding non-randomiz

Download