No Arabic abstract
We present models which complete missing text given transliterations of ancient Mesopotamian documents, originally written on cuneiform clay tablets (2500 BCE - 100 CE). Due to the tablets deterioration, scholars often rely on contextual cues to manually fill in missing parts in the text in a subjective and time-consuming process. We identify that this challenge can be formulated as a masked language modelling task, used mostly as a pretraining objective for contextualized language models. Following, we develop several architectures focusing on the Akkadian language, the lingua franca of the time. We find that despite data scarcity (1M tokens) we can achieve state of the art performance on missing tokens prediction (89% hit@5) using a greedy decoding scheme and pretraining on data from other languages and different time periods. Finally, we conduct human evaluations showing the applicability of our models in assisting experts to transcribe texts in extinct languages.
Masked language modeling (MLM) is one of the key sub-tasks in vision-language pretraining. In the cross-modal setting, tokens in the sentence are masked at random, and the model predicts the masked tokens given the image and the text. In this paper, we observe several key disadvantages of MLM in this setting. First, as captions tend to be short, in a third of the sentences no token is sampled. Second, the majority of masked tokens are stop-words and punctuation, leading to under-utilization of the image. We investigate a range of alternative masking strategies specific to the cross-modal setting that address these shortcomings, aiming for better fusion of text and image in the learned representation. When pre-training the LXMERT model, our alternative masking strategies consistently improve over the original masking strategy on three downstream tasks, especially in low resource settings. Further, our pre-training approach substantially outperforms the baseline model on a prompt-based probing task designed to elicit image objects. These results and our analysis indicate that our method allows for better utilization of the training data.
Chronic pain is recognized as a major health problem, with impacts not only at the economic, but also at the social, and individual levels. Being a private and subjective experience, it is impossible to externally and impartially experience, describe, and interpret chronic pain as a purely noxious stimulus that would directly point to a causal agent and facilitate its mitigation, contrary to acute pain, the assessment of which is usually straightforward. Verbal communication is, thus, key to convey relevant information to health professionals that would otherwise not be accessible to external entities, namely, intrinsic qualities about the painful experience and the patient. We propose and discuss a topic modelling approach to recognize patterns in verbal descriptions of chronic pain, and use these patterns to quantify and qualify experiences of pain. Our approaches allow for the extraction of novel insights on chronic pain experiences from the obtained topic models and latent spaces. We argue that our results are clinically relevant for the assessment and management of chronic pain.
It is a well-known approach for fringe groups and organizations to use euphemisms -- ordinary-sounding and innocent-looking words with a secret meaning -- to conceal what they are discussing. For instance, drug dealers often use pot for marijuana and avocado for heroin. From a social media content moderation perspective, though recent advances in NLP have enabled the automatic detection of such single-word euphemisms, no existing work is capable of automatically detecting multi-word euphemisms, such as blue dream (marijuana) and black tar (heroin). Our paper tackles the problem of euphemistic phrase detection without human effort for the first time, as far as we are aware. We first perform phrase mining on a raw text corpus (e.g., social media posts) to extract quality phrases. Then, we utilize word embedding similarities to select a set of euphemistic phrase candidates. Finally, we rank those candidates by a masked language model -- SpanBERT. Compared to strong baselines, we report 20-50% higher detection accuracies using our algorithm for detecting euphemistic phrases.
We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.
In this work, we demonstrate that the contextualized word vectors derived from pretrained masked language model-based encoders share a common, perhaps undesirable pattern across layers. Namely, we find cases of persistent outlier neurons within BERT and RoBERTas hidden state vectors that consistently bear the smallest or largest values in said vectors. In an attempt to investigate the source of this information, we introduce a neuron-level analysis method, which reveals that the outliers are closely related to information captured by positional embeddings. We also pre-train the RoBERTa-base models from scratch and find that the outliers disappear without using positional embeddings. These outliers, we find, are the major cause of anisotropy of encoders raw vector spaces, and clipping them leads to increased similarity across vectors. We demonstrate this in practice by showing that clipped vectors can more accurately distinguish word senses, as well as lead to better sentence embeddings when mean pooling. In three supervised tasks, we find that clipping does not affect the performance.