Do you want to publish a course? Click here

Quantifying the Impact of Precision Errors on Quantum Approximate Optimization Algorithms

58   0   0.0 ( 0 )
 Added by Gregory Quiroz
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on QAOA performance both from the perspective of algorithmic training and canonical state- and observable-dependent QAOA-relevant metrics. Leveraging cumulant expansions, we recast the faulty QAOA as a control problem in which precision errors are expressed as multiplicative control noise and derive bounds on the performance of QAOA. We show using both analytical techniques and numerical simulations that errors in the analog implementation of QAOA circuits hinder its performance as an optimization algorithm. In particular, we find that any fixed precision implementation of QAOA will be subject to an exponential degradation in performance dependent upon the number of optimal QAOA layers and magnitude of the precision error. Despite this significant reduction, we show that it is possible to mitigate precision errors in QAOA via digitization of the variational parameters, therefore at the cost of increasing circuit depth. We illustrate our results via numerical simulations and analytic and empirical error bounds as a comparison. While focused on precision errors, our approach naturally lends itself to more general noise scenarios and the calculation of error bounds on QAOA performance and broader classes of variational quantum algorithms.



rate research

Read More

The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly-degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer is used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
Error models for quantum computing processors describe their deviation from ideal behavior and predict the consequences in applications. But those processors experimental behavior -- the observed outcome statistics of quantum circuits -- are rarely consistent with error models, even in characterization experiments like randomized benchmarking (RB) or gate set tomography (GST), where the error model was specifically extracted from the data in question. We show how to resolve these inconsistencies, and quantify the rate of unmodeled errors, by augmenting error models with a parameterized wildcard error model. Adding wildcard error to an error model relaxes and weakens its predictions in a controlled way. The amount of wildcard error required to restore consistency with data quantifies how much unmodeled error was observed, in a way that facilitates direct comparison to standard gate error rates. Using both simulated and experimental data, we show how to use wildcard error to reconcile error models derived from RB and GST experiments with inconsistent data, to capture non-Markovianity, and to quantify all of a processors observed error.
120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
The Quantum Approximate Optimization Algorithm, QAOA, uses a shallow depth quantum circuit to produce a parameter dependent state. For a given combinatorial optimization problem instance, the quantum expectation of the associated cost function is the parameter dependent objective function of the QAOA. We demonstrate that if the parameters are fixed and the instance comes from a reasonable distribution then the objective function value is concentrated in the sense that typical instances have (nearly) the same value of the objective function. This applies not just for optimal parameters as the whole landscape is instance independent. We can prove this is true for low depth quantum circuits for instances of MaxCut on large 3-regular graphs. Our results generalize beyond this example. We support the arguments with numerical examples that show remarkable concentration. For higher depth circuits the numerics also show concentration and we argue for this using the Law of Large Numbers. We also observe by simulation that if we find parameters which result in good performance at say 10 bits these same parameters result in good performance at say 24 bits. These findings suggest ways to run the QAOA that reduce or eliminate the use of the outer loop optimization and may allow us to find good solutions with fewer calls to the quantum computer.
160 - Seth Lloyd 2018
The quantum approximate optimization algorithm (QAOA) applies two Hamiltonians to a quantum system in alternation. The original goal of the algorithm was to drive the system close to the ground state of one of the Hamiltonians. This paper shows that the same alternating procedure can be used to perform universal quantum computation: the times for which the Hamiltonians are applied can be programmed to give a computationally universal dynamics. The Hamiltonians required can be as simple as homogeneous sums of single-qubit Pauli Xs and two-local ZZ Hamiltonians on a one-dimensional line of qubits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا