Do you want to publish a course? Click here

The Atacama Cosmology Telescope: Constraints on Pre-Recombination Early Dark Energy

328   0   0.0 ( 0 )
 Added by J. Colin Hill
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The early dark energy (EDE) scenario aims to increase the value of the Hubble constant ($H_0$) inferred from cosmic microwave background (CMB) data over that found in $Lambda$CDM, via the introduction of a new form of energy density in the early universe. The EDE component briefly accelerates cosmic expansion just prior to recombination, which reduces the physical size of the sound horizon imprinted in the CMB. Previous work has found that non-zero EDE is not preferred by Planck CMB power spectrum data alone, which yield a 95% confidence level (CL) upper limit $f_{rm EDE} < 0.087$ on the maximal fractional contribution of the EDE field to the cosmic energy budget. In this paper, we fit the EDE model to CMB data from the Atacama Cosmology Telescope (ACT) Data Release 4. We find that a combination of ACT, large-scale Planck TT (similar to WMAP), Planck CMB lensing, and BAO data prefers the existence of EDE at $>99.7$% CL: $f_{rm EDE} = 0.091^{+0.020}_{-0.036}$, with $H_0 = 70.9^{+1.0}_{-2.0}$ km/s/Mpc (both 68% CL). From a model-selection standpoint, we find that EDE is favored over $Lambda$CDM by these data at roughly $3sigma$ significance. In contrast, a joint analysis of the full Planck and ACT data yields no evidence for EDE, as previously found for Planck alone. We show that the preference for EDE in ACT alone is driven by its TE and EE power spectrum data. The tight constraint on EDE from Planck alone is driven by its high-$ell$ TT power spectrum data. Understanding whether these differing constraints are physical in nature, due to systematics, or simply a rare statistical fluctuation is of high priority. The best-fit EDE models to ACT and Planck exhibit coherent differences across a wide range of multipoles in TE and EE, indicating that a powerful test of this scenario is anticipated with near-future data from ACT and other ground-based experiments.



rate research

Read More

We present new constraints on anisotropic birefringence of the cosmic microwave background polarization using two seasons of data from the Atacama Cosmology Telescope covering $456$ square degrees of sky. The birefringence power spectrum, measured using a curved-sky quadratic estimator, is consistent with zero. Our results provide the tightest current constraint on birefringence over a range of angular scales between $5$ arcminutes and $9$ degrees. We improve previous upper limits on the amplitude of a scale-invariant birefringence power spectrum by a factor of between $2$ and $3$. Assuming a nearly-massless axion field during inflation, our result is equivalent to a $2,sigma$ upper limit on the Chern-Simons coupling constant between axions and photons of $g_{alphagamma}<4.0times 10^{-2}/H_I$ where $H_I$ is the inflationary Hubble scale.
145 - Lu Feng , Dong-Ze He , Hai-Li Li 2019
We investigate the impacts of dark energy on constraining massive (active/sterile) neutrinos in interacting dark energy (IDE) models by using the current observations. We employ two typical IDE models, the interacting $w$ cold dark matter (I$w$CDM) model and the interacting holographic dark energy (IHDE) model, to make an analysis. To avoid large-scale instability, we use the parameterized post-Friedmann approach to calculate the cosmological perturbations in the IDE models. The cosmological observational data used in this work include the Planck cosmic microwave background (CMB) anisotropies data, the baryon acoustic oscillation data, the type Ia supernovae data, the direct measurement of the Hubble constant, the weak lensing data, the redshift-space distortion data, and the CMB lensing data. We find that the dark energy properties could influence the constraint limits of active neutrino mass and sterile neutrino parameters in the IDE models. We also find that the dark energy properties could influence the constraints on the coupling strength parameter $beta$, and a positive coupling constant, $beta>0$, can be detected at the $2.5sigma$ statistical significance for the IHDE+$ u_s$ model by using the all-data combination. In addition, we also discuss the Hubble tension issue in these scenarios. We find that the $H_0$ tension can be effectively relieved by considering massive sterile neutrinos, and in particular in the IHDE+$ u_s$ model the $H_0$ tension can be reduced to be at the $1.28sigma$ level.
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function, the scalar field potential, and the scalar field-neutrino coupling function. We present an analytic treatment of the background evolution during radiation- and matter-domination for exponential and inverse power law potentials, and find a relaxation of constraints compared to previous work on the amount of early dark energy in the exponential case. We then carry out a numerical analysis of the background cosmology for both types of potential and various illustrative choices of the kinetic and coupling functions. By applying bounds from Planck on the amount of early dark energy, we are able to constrain the magnitude of the kinetic function at early times.
Many quintessence models possess scaling or attractor solutions where the fraction of dark energy follows the dominant component in previous epochs of the expansion, or phase transitions may happen close to matter-radiation equality time. A non-negligible early dark energy (EDE) fraction around matter-radiation equality could contribute to alleviate the $H_0$ tension. We constrain the EDE fraction using two approaches: first, we use a fluid parameterization that mimics the plateaux of the dominant components in the past. An alternative tomographic approach constrains the EDE density in binned redshift intervals. This allows us to reconstruct $Omega_{de}(z)$ before and after the decoupling of the CMB photons. We have employed Planck data 2018, the Pantheon supernovae of Type Ia (SNIa), galaxy clustering data, the prior on the absolute magnitude of SNIa by SH0ES, and weak lensing (WL) data from KiDS+VIKING-450 and DES-Y1. When we use a minimal parameterization mimicking the background plateaux, EDE has only a small impact on current cosmological tensions. The constraints on the EDE fraction weaken considerably when its sound speed is allowed to vary. By means of our binned analysis we put very tight constraints on the EDE fraction around the CMB decoupling time, $lesssim 0.4%$ at $2sigma$ c.l. We confirm previous results that a significant EDE fraction in the radiation-dominated epoch (RDE) loosens the $H_0$ tension, but tends to worsen the $sigma_8$ one. The presence of EDE in the matter-dominated era helps to alleviate this issue. When the SH0ES prior and WL data are considered in the fitting analysis in combination with data from CMB, SNIa and baryon acoustic oscillations, the EDE fractions are constrained to be $lesssim 2.6%$ in the RDE epoch and $lesssim 1.5%$ in the redshift range $zin (100,1000)$ at $2sigma$ c.l. The tensions remain at $sim 2-3sigma$ c.l.
We consider the holographic Friedman-Robertson-Walker (hFRW) universe on the 4-dimensional membrane embedded in the 5-dimensional bulk spacetime and fit the parameters with the observational data. In order to fully account for the phenomenology of this scenario, we consider the models with the brane cosmological constant and the negative bulk cosmological constant. The contribution from the bulk is represented as the holographic dark fluid on the membrane. We derive the universal modified Friedmann equation by including all of these effects in both braneworld and holographic cutoff approaches. For three specific models, namely, the pure hFRW model, the one with the brane cosmological constant, and the one with the negative bulk cosmological constant, we compare the model predictions with the observations. The parameters in the considered hFRW models are constrained with observational data. In particular, it is shown that the model with the brane cosmological constant can fit data as well as the standard $Lambda$CDM universe. We also find that the $sigma_8$ tension observed in different large-structure experiments can be effectively relaxed in this holographic scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا