No Arabic abstract
We exploit a suite of large N-body simulations (up to N=$4096^3$) performed with Abacus, of scale-free models with a range of spectral indices $n$, to better understand and quantify convergence of the matter power spectrum in dark matter only cosmological N-body simulations. Using self-similarity to identify converged regions, we show that the maximal wavenumber resolved at a given level of accuracy increases monotonically as a function of time. At the $1%$ level it starts at early times from a fraction of $k_Lambda$, the Nyquist wavenumber of the initial grid, and reaches at most, if the force softening is sufficiently small, $sim 2 k_Lambda$ at the very latest times we evolve to. At the $5%$ level accuracy extends up to slightly larger wavenumbers, of order $5k_Lambda$ at late times. Expressed as a suitable function of the scale-factor, accuracy shows a very simple $n$-dependence, allowing a straightforward extrapolation to place conservative bounds on the accuracy of N-body simulations of non-scale free models like LCDM. Quantitatively our findings are broadly in line with the conservative assumptions about resolution adopted by recent studies using large cosmological simulations (e.g. Euclid Flagship) aiming to constrain the mildly non-linear regime. On the other hand, we note that studies of the matter power spectrum in the literature have often used data at larger wavenumbers, where convergence to the physical result is poor. Even qualitative conclusions about clustering at small scales, e.g concerning the validity of the stable clustering approximation, may need revision in light of our results.
We study the cosmological power spectra (PS) of the differential and integral galaxy volume number densities $gamma_i$ and $gamma_i^{*}$, constructed with the cosmological distances $d_i$ $(i=A,G,L,Z)$, where $d_A$ is the angular diameter distance, $d_G$ is the galaxy area distance, $d_L$ is the luminosity distance and $d_z$ is the redshift distance. Theoretical and observational quantities were obtained in the FLRW spacetime with a non-vanishing $Lambda$. The radial correlation $Xi_i$, as defined in the context of these densities, is discussed in the wave number domain. All observational quantities were computed using luminosity function (LF) data obtained from the FORS Deep Field galaxy survey. The theoretical and observational PS of $gamma_i$, $gamma_i^{ast}$, $Xi_i$ and $gamma_i / gamma_i^ast$ were calculated by performing Fourier transforms on these densities previously derived by Iribarrem et al. (2012) from the observed values $gamma_{obs}$ and ${gamma^ast}_{obs}$ obtained using the galactic absolute magnitudes and galaxy LF Schechters parameters presented in Gabasch et al. (2004, 2006) in the range $0.5 le z le5.0$. The results show similar behavior of the PS obtained from $gamma$ and $gamma^{ast}$ using $d_L$, $d_z$ and $d_G$ as distance measures. The PS of the densities defined with $d_A$ have a different and inconclusive behavior, as this cosmological distance reaches a maximum at $zapprox 1.6$ in the adopted cosmology. For the other distances, our results suggest that the PS of ${gamma_i}_{obs}$, ${gamma^ast_i}_{obs}$ and ${gamma_i / gamma^{ast}_i}_{obs}$ have a general behavior approximately similar to the PS obtained with the galaxy two-point correlation function and, by being sample size independent, they may be considered as alternative analytical tools to study the galaxy distribution.
The most commonly used estimators of the anisotropic galaxy power spectrum employ Fast Fourier transforms, and rely on a specific choice of the line-of-sight that breaks the symmetry between the galaxy pair. This leads to wide-angle effects, including the presence of odd power spectrum multipoles like the dipole ($ell = 1$) and octopole ($ell = 3$). In Fourier-space these wide-angle effects also couple to the survey window function. We present a self-consistent framework extending the commonly used window function treatment to include the wide-angle effects. We show that our framework can successfully model the wide-angle effects in the BOSS DR12 dataset. We present estimators for the odd power spectrum multipoles and, detect these multipoles in BOSS DR12 with high significance. Understanding the impact of the wide-angle effects on the power spectrum multipoles is essential for many cosmological observables like primordial non-Gaussianity and the detection of General Relativistic effects and represents a potential systematic for measurements of Baryon Acoustic Oscillations and redshift-space distortions.
A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in $k_{parallel}, k_{perp}$ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window---which samples only a limited range of angles close to the line-of-sight direction---differs from the full spherically-averaged power spectrum which requires an average over emph{all} angles. In this paper, we calculate the magnitude of this wedge bias for the first time. We find that the bias is strongest at high redshifts, where measurements using foreground avoidance will over-estimate the power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically-averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude ($lesssim 20$ per cent). The effect shows only a weak dependence on spatial scale and reionization topology.
A promising method for measuring the cosmological parameter combination fsigma_8 is to compare observed peculiar velocities with peculiar velocities predicted from a galaxy density field using perturbation theory. We use N-body simulations and semi-analytic galaxy formation models to quantify the accuracy and precision of this method. Specifically, we examine a number of technical aspects, including the optimal smoothing length applied to the density field, the use of dark matter halos or galaxies as tracers of the density field, the effect of noise in the halo mass estimates or in the stellar-to-halo mass relation, and the effect of finite survey volumes. We find that for a Gaussian smoothing of 4 Mpc/h, the method has only small systematic biases at the level of 5%. Cosmic variance affects current measurements at the 5% level due to the volume of current redshift data sets.
We present cosmological parameter measurements from the effective field theory-based full-shape analysis of the power spectrum of emission line galaxies (ELGs). First, we perform extensive tests on simulations and determine appropriate scale cuts for the perturbative description of the ELG power spectrum. We study in detail non-linear redshift-space distortions (fingers-of-God) for this sample and show that they are somewhat weaker than those of luminous red galaxies. This difference is not significant for current data, but may become important for future surveys like Euclid/DESI. Then we analyze recent measurements of the ELG power spectrum from the extended Baryon acoustic Oscillation Spectroscopic Survey (eBOSS) within the $ uLambda$CDM model. Combined with the BBN baryon density prior, the ELG pre- and post-reconstructed power spectra alone constrain the matter density $Omega_m=0.257_{-0.045}^{+0.031}$, the current mass fluctuation amplitude $sigma_8=0.571_{-0.076}^{+0.052}$, and the Hubble constant $H_0=84.5_{-7}^{+5.8}$ km/s/Mpc (all at 68% CL). Combining with other full-shape and BAO data we measure $Omega_m=0.321_{-0.016}^{+0.013}$, $sigma_8=0.662_{-0.042}^{+0.038}$, and $H_0=68.9_{-1.1}^{+1}$ km/s/Mpc. The total neutrino mass is constrained to be $M_{rm tot}<0.64$ eV (95% CL) from the BBN, full-shape and BAO data only.