ErfAct: Non-monotonic smooth trainable Activation Functions


Abstract in English

An activation function is a crucial component of a neural network that introduces non-linearity in the network. The state-of-the-art performance of a neural network depends on the perfect choice of an activation function. We propose two novel non-monotonic smooth trainable activation functions, called ErfAct-1 and ErfAct-2. Experiments suggest that the proposed functions improve the network performance significantly compared to the widely used activations like ReLU, Swish, and Mish. Replacing ReLU by ErfAct-1 and ErfAct-2, we have 5.21% and 5.04% improvement for top-1 accuracy on PreactResNet-34 network in CIFAR100 dataset, 2.58% and 2.76% improvement for top-1 accuracy on PreactResNet-34 network in CIFAR10 dataset, 1.0%, and 1.0% improvement on mean average precision (mAP) on SSD300 model in Pascal VOC dataset.

Download