Do you want to publish a course? Click here

Stress concentration factors for the Lame system arising from composites

377   0   0.0 ( 0 )
 Added by Zhiwen Zhao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

For two neighbouring stiff inclusions, the stress, which is the gradient of a solution to the Lam{e} system of linear elasticity, may exhibit singular behavior as the distance between these two inclusions becomes arbitrarily small. In this paper, a family of stress concentration factors, which determine whether the stress will blow up or not, are accurately constructed in the presence of the generalized $m$-convex inclusions in all dimensions. We then use these stress concentration factors to establish the optimal upper and lower bounds on the stress blow-up rates in any dimension and meanwhile give a precise asymptotic expression of the stress concentration for interfacial boundaries of inclusions with different principal curvatures in dimension three. Finally, the corresponding results for the perfect conductivity problem are also presented.



rate research

Read More

In this note we discuss the (higher) regularity properties of the Signorini problem for the homogeneous, isotropic Lame system. Relying on an observation by Schumann cite{Schumann1}, we reduce the question of the solutions and the free boundary regularity for the homogeneous, isotropic Lame system to the corresponding regularity properties of the obstacle problem for the half-Laplacian.
In this paper we prove a quantitative form of the strong unique continuation property for the Lame system when the Lame coefficients $mu$ is Lipschitz and $lambda$ is essentially bounded in dimension $nge 2$. This result is an improvement of our earlier result cite{lin5} in which both $mu$ and $lambda$ were assumed to be Lipschitz.
We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p leq N$. We prove optimal $L^infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.
We establish upper bounds on the blow-up rate of the gradients of solutions of the Lam{e} system with partially infinite coefficients in dimensions greater than two as the distance between the surfaces of discontinuity of the coefficients of the system tends to zero.
We study the local in time existence of a regular solution of a nonlinear parabolic backward-forward system arising from the theory of Mean-Field Games (briefly MFG). The proof is based on a contraction argument in a suitable space that takes account of the peculiar structure of the system, which involves also a coupling at the final horizon. We apply the result to obtain existence to very general MFG models, including also congestion problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا