No Arabic abstract
The Mid-Infrared Instrument (MIRI) on-board JWST will provide imaging, coronagraphy, low-resolution spectroscopy and medium-resolution spectroscopy at unprecedented sensitivity levels in the mid-infrared wavelength range. The Medium-Resolution Spectrometer (MRS) of MIRI is an integral field spectrograph that provides diffraction-limited spectroscopy between 4.9 and 28.3 um, within a FOV varying from 13 to 56 square. From ground testing, we calculate the physical parameters essential to general observers and calibrating the wavelength solution and resolving power of the MRS is critical for maximising the scientific performance of the instrument. We have used ground-based observations of discrete spectral features in combination with Fabry-Perot etalon spectra to characterize the wavelength solution and spectral resolving power of the MRS. We present the methodology used to derive the MRS spectral characterisation, which includes the precise wavelength coverage of each MRS sub-band, computation of the resolving power as a function of wavelength, and measuring slice-dependent spectral distortions. The resolving power varies from R3500 in channel 1 to R1500 in channel 4. Based on the ground test data, the wavelength calibration accuracy is estimated to be below one tenth of a pixel, with small systematic shifts due to the target position within a slice for unresolved sources, that have a maximum amplitude of about 0.25 spectral resolution elements. Based on ground test data, the MRS complies with the spectral requirements for both the R and wavelength accuracy for which it was designed. We also present the commissioning strategies and targets that will be followed to update the spectral characterisation of the MRS.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer (MRS) is the only mid-IR Integral Field Spectrometer on board James Webb Space Telescope. The complexity of the MRS requires a very specialized pipeline, with some specific steps not present in other pipelines of JWST instruments, such as fringe corrections and wavelength offsets, with different algorithms for point source or extended source data. The MRS pipeline has also two different variants: the baseline pipeline, optimized for most foreseen science cases, and the optimal pipeline, where extra steps will be needed for specific science cases. This paper provides a comprehensive description of the MRS Calibration Pipeline from uncalibrated slope images to final scientific products, with brief descriptions of its algorithms, input and output data, and the accessory data and calibration data products necessary to run the pipeline.
The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.
We present a new package for joint deconvolution of ALMA 12m, 7m, and Total Power (TP) data, dubbed ``Total Power Map to Visibilities (TP2VIS). It converts a TP (single-dish) map into visibilities on the CASA platform, which can be input into deconvolvers (e.g., CLEAN) along with 12m and 7m visibilities. A manual is presented in the Github repository (https://github.com/tp2vis/distribute). Combining data from the different ALMA arrays is a driver for a number of science topics, namely those that probe size scales of extended and compact structures simultaneously. We test TP2VIS using model images, one with a single Gaussian and another that mimics the internal structures of giant molecular clouds. The result shows that the better uv coverage with TP2VIS visibilities helps the deconvolution process and reproduces the model image within errors of only 5% over two orders of magnitude in flux.
Observations of metal absorption systems in the spectra of distant quasars allow to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph Espresso, recently installed at the VLT. In preparation of the fundamental physics related part of the Espresso GTO program, we present a thorough assessment of the Espresso wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, based on the combination of Thorium-Argon arc lamp spectra and a Fabry-Perot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24m/s. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of Espresso with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the $10^{-6}$ level can be obtained with Espresso without being limited by wavelength calibration systematics.
SPIRou is a near-infrared (nIR) spectropolarimeter at the CFHT, covering the YJHK nIR spectral bands ($980-2350,mathrm{nm}$). We describe the development and current status of the SPIRou wavelength calibration in order to obtain precise radial velocities (RVs) in the nIR. We make use of a UNe hollow-cathode lamp and a Fabry-Perot etalon to calibrate the pixel-wavelength correspondence for SPIRou. Different methods are developed for identifying the hollow-cathode lines, for calibrating the wavelength dependence of the Fabry-Perot cavity width, and for combining the two calibrators. The hollow-cathode spectra alone do not provide a sufficiently accurate wavelength solution to meet the design requirements of an internal error of $mathrm{<0.45,m,s^{-1}}$, for an overall RV precision of $mathrm{1,m,s^{-1}}$. However, the combination with the Fabry-Perot spectra allows for significant improvements, leading to an internal error of $mathrm{sim 0.15,m,s^{-1}}$. We examine the inter-night stability, intra-night stability, and impact on the stellar RVs of the wavelength solution.