Do you want to publish a course? Click here

Nonlocal reaction traffic flow model with on-off ramps

90   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a non-local version of a scalar balance law modeling traffic flow with on-ramps and off-ramps. The source term is used to describe the traffic flow over the on-ramp and off-ramps. We approximate the problem using an upwind-type numerical scheme and we provide L^infty and BV estimates for the sequence of approximate solutions. Together with a discrete entropy inequality, we also show the well-posedness of the considered class of scalar balance laws. Some numerical simulations illustrate the behaviour of solutions in sample cases.



rate research

Read More

We present results on the modeling of on- and off-ramps in cellular automata for traffic flow, especially the Nagel-Schreckenberg model. We study two different types of on-ramps that cause qualitatively the same effects. In a certain density regime one observes plateau formation in the fundamental diagram. The plateau value depends on the input-rate of cars at the on-ramp. The on-ramp acts as a local perturbation that separates the system into two regimes: A regime of free flow and another one where only jammed states exist. This phase separation is the reason for the plateau formation and implies a behaviour analogous to that of stationary defects. This analogy allows to perform very fast simulations of complex traffic networks with a large number of on- and off-ramps because one can parametrise on-ramps in an exceedingly easy way.
98 - Kuang Huang , Qiang Du 2020
The emerging connected and automated vehicle technologies allow vehicles to perceive and process traffic information in a wide spatial range. Modeling nonlocal interactions between connected vehicles and analyzing their impact on traffic flows become important research questions to traffic planners. This paper considers a particular nonlocal LWR model that has been studied in the literature. The model assumes that vehicle velocities are controlled by the traffic density distribution in a nonlocal spatial neighborhood. By conducting stability analysis of the model, we obtain that, under suitable assumptions on how the nonlocal information is utilized, the nonlocal traffic flow is stable around the uniform equilibrium flow and all traffic waves dissipate exponentially. Meanwhile, improper use of the nonlocal information in the vehicle velocity selection could result in persistent traffic waves. Such results can shed light to the future design of driving algorithms for connected and automated vehicles.
We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit some explicit solutions. For the numerical discretization we employ first order IMEX, and second order BDF2 discretization without any additional stabilization term. We rigorously prove the energy stability of the numerical schemes under nearly sharp and quite mild time step constraints. We demonstrate the striking similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equations with double well potentials.
125 - Christophe Besse 2020
We introduce and implement a method to compute stationary states of nonlinear Schrodinger equations on metric graphs. Stationary states are obtained as local minimizers of the nonlinear Schrodinger energy at fixed mass. Our method is based on a normalized gradient flow for the energy (i.e. a gradient flow projected on a fixed mass sphere) adapted to the context of nonlinear quantum graphs. We first prove that, at the continuous level, the normalized gradient flow is well-posed, mass-preserving, energy diminishing and converges (at least locally) towards stationary states. We then establish the link between the continuous flow and its discretized version. We conclude by conducting a series of numerical experiments in model situations showing the good performance of the discrete flow to compute stationary states. Further experiments as well as detailed explanation of our numerical algorithm are given in a companion paper.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا