Do you want to publish a course? Click here

adabmDCA: Adaptive Boltzmann machine learning for biological sequences

116   0   0.0 ( 0 )
 Added by Anna Paola Muntoni
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Boltzmann machines are energy-based models that have been shown to provide an accurate statistical description of domains of evolutionary-related protein and RNA families. They are parametrized in terms of local biases accounting for residue conservation, and pairwise terms to model epistatic coevolution between residues. From the model parameters, it is possible to extract an accurate prediction of the three-dimensional contact map of the target domain. More recently, the accuracy of these models has been also assessed in terms of their ability in predicting mutational effects and generating in silico functional sequences. Our adaptive implementation of Boltzmann machine learning, adabmDCA, can be generally applied to both protein and RNA families and accomplishes several learning set-ups, depending on the complexity of the input data and on the user requirements. The code is fully available at https://github.com/anna-pa-m/adabmDCA. As an example, we have performed the learning of three Boltzmann machines modeling the Kunitz and Beta-lactamase2 protein domains and TPP-riboswitch RNA domain. The models learned by adabmDCA are comparable to those obtained by state-of-the-art techniques for this task, in terms of the quality of the inferred contact map as well as of the synthetically generated sequences. In addition, the code implements both equilibrium and out-of-equilibrium learning, which allows for an accurate and lossless training when the equilibrium one is prohibitive in terms of computational time, and allows for pruning irrelevant parameters using an information-based criterion.



rate research

Read More

Machine-learning models that learn from data to predict how protein sequence encodes function are emerging as a useful protein engineering tool. However, when using these models to suggest new protein designs, one must deal with the vast combinatorial complexity of protein sequences. Here, we review how to use a sequence-to-function machine-learning surrogate model to select sequences for experimental measurement. First, we discuss how to select sequences through a single round of machine-learning optimization. Then, we discuss sequential optimization, where the goal is to discover optimized sequences and improve the model across multiple rounds of training, optimization, and experimental measurement.
Sequences of nucleotides (for DNA and RNA) or amino acids (for proteins) are central objects in biology. Among the most important computational problems is that of sequence alignment, i.e. arranging sequences from different organisms in such a way to identify similar regions, to detect evolutionary relationships between sequences, and to predict biomolecular structure and function. This is typically addressed through profile models, which capture position-specificities like conservation in sequences, but assume an independent evolution of different positions. Over the last years, it has been well established that coevolution of different amino-acid positions is essential for maintaining three-dimensional structure and function. Modeling approaches based on inverse statistical physics can catch the coevolution signal in sequence ensembles; and they are now widely used in predicting protein structure, protein-protein interactions, and mutational landscapes. Here, we present DCAlign, an efficient alignment algorithm based on an approximate message-passing strategy, which is able to overcome the limitations of profile models, to include coevolution among positions in a general way, and to be therefore universally applicable to protein- and RNA-sequence alignment without the need of using complementary structural information. The potential of DCAlign is carefully explored using well-controlled simulated data, as well as real protein and RNA sequences.
We used machine learning methods to predict NaV1.7 inhibitors and found the model RF-CDK that performed best on the imbalanced dataset. Using the RF-CDK model for screening drugs, we got effective compounds K1. We use the cell patch clamp method to verify K1. However, because the model evaluation method in this article is not comprehensive enough, there is still a lot of research work to be performed, such as comparison with other existing methods. The target protein has multiple active sites and requires our further research. We need more detailed models to consider this biological process and compare it with the current results, which is an error in this article. So we want to withdraw this article.
156 - E. Almaas , A.-L. Barabasi 2004
The rapidly developing theory of complex networks indicates that real networks are not random, but have a highly robust large-scale architecture, governed by strict organizational principles. Here, we focus on the properties of biological networks, discussing their scale-free and hierarchical features. We illustrate the major network characteristics using examples from the metabolic network of the bacterium Escherichia coli. We also discuss the principles of network utilization, acknowledging that the interactions in a real network have unequal strengths. We study the interplay between topology and reaction fluxes provided by flux-balance analysis. We find that the cellular utilization of the metabolic network is both globally and locally highly inhomogeneous, dominated by hot-spots, representing connected high-flux pathways.
The Boltzmann Machine (BM) is a neural network composed of stochastically firing neurons that can learn complex probability distributions by adapting the synaptic interactions between the neurons. BMs represent a very generic class of stochastic neural networks that can be used for data clustering, generative modelling and deep learning. A key drawback of software-based stochastic neural networks is the required Monte Carlo sampling, which scales intractably with the number of neurons. Here, we realize a physical implementation of a BM directly in the stochastic spin dynamics of a gated ensemble of coupled cobalt atoms on the surface of semiconducting black phosphorus. Implementing the concept of orbital memory utilizing scanning tunnelling microscopy, we demonstrate the bottom-up construction of atomic ensembles whose stochastic current noise is defined by a reconfigurable multi-well energy landscape. Exploiting the anisotropic behaviour of black phosphorus, we build ensembles of atoms with two well-separated intrinsic time scales that represent neurons and synapses. By characterizing the conditional steady-state distribution of the neurons for given synaptic configurations, we illustrate that an ensemble can represent many distinct probability distributions. By probing the intrinsic synaptic dynamics, we reveal an autonomous reorganization of the synapses in response to external electrical stimuli. This self-adaptive architecture paves the way for on-chip learning directly in atomic-scale machine learning hardware.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا