A study of N =1 SCFT derived from N =2 SCFT: index and chiral ring


Abstract in English

One can derive a large class of new $mathcal{N}=1$ SCFTs by turning on $mathcal{N}=1$ preserving deformations for $mathcal{N}=2$ Argyres-Dougals theories. In this work, we use $mathcal{N}=2$ superconformal indices to get indices of $mathcal{N}=1$ SCFTs, then use these indices to derive chiral rings of $mathcal{N}=1$ SCFTs. For a large class of $mathcal{N}=2$ theories, we find that the IR theory contains only free chirals if we deform the parent $mathcal{N}=2$ theory using the Coulomb branch operator with smallest scaling dimension. Our results provide interesting lessons on studies of $mathcal{N}=1$ theories, such as $a$-maximization, accidental symmetries, chiral ring, etc.

Download