No Arabic abstract
We discuss the continuum limit of discrete Dirac operators on the square lattice in $mathbb R^2$ as the mesh size tends to zero. To this end, we propose a natural and simple embedding of $ell^2(mathbb Z_h^d)$ into $L^2(mathbb R^d)$ that enables us to compare the discrete Dirac operators with the continuum Dirac operators in the same Hilbert space $L^2(mathbb R^2)^2$. In particular, we prove strong resolvent convergence. Potentials are assumed to be bounded and uniformly continuous functions on $mathbb R^2$ and allowed to be complex matrix-valued.
We show that the eigenvalues of the intrinsic Dirac operator on the boundary of a Euclidean domain can be obtained as the limits of eigenvalues of Euclidean Dirac operators, either in the domain with a MIT-bag type boundary condition or in the whole space, with a suitably chosen zero order mass term.
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudomodes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic non-semi-classical approach, which results in substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including superexponential ones.
In this paper we introduce the Dirac and spin-Dirac operators associated to a connection on Riemann-Cartan space(time) and standard Dirac and spin-Dirac operators associated with a Levi-Civita connection on a Riemannian (Lorentzian) space(time) and calculate the square of these operators, which play an important role in several topics of modern Mathematics, in particular in the study of the geometry of moduli spaces of a class of black holes, the geometry of NS-5 brane solutions of type II supergravity theories and BPS solitons in some string theories. We obtain a generalized Lichnerowicz formula, decompositions of the Dirac and spin-Dirac operators and their squares in terms of the standard Dirac and spin-Dirac operators and using the fact that spinor fields (sections of a spin-Clifford bundle) have representatives in the Clifford bundle we present also a noticeable relation involving the spin-Dirac and the Dirac operators.
We address the problem of the continuum limit for a system of Hausdorff lattices (namely lattices of isolated points) approximating a topological space $M$. The correct framework is that of projective systems. The projective limit is a universal space from which $M$ can be recovered as a quotient. We dualize the construction to approximate the algebra ${cal C}(M)$ of continuous functions on $M$. In a companion paper we shall extend this analysis to systems of noncommutative lattices (non Hausdorff lattices).
We consider some compact non-selfadjoint perturbations of fibered one-dimensional discrete Schrodinger operators. We show that the perturbed operator exhibits finite discrete spectrum under suitable- regularity conditions.