Noise-induced network bursts and coherence in a calcium-mediated neural network


Abstract in English

Noise-induced population bursting has been widely identified to play important roles in the information process. We constructed a mathematical model for a random and sparse neural network where bursting can be induced from the resting state by the global stochastic stimulus. Importantly, the noise-induced bursting dynamics of this network are mediated by calcium conductance. We use two spectral measures to evaluate the network coherence in the context of network bursts, the spike trains of all neurons and the individual bursts of all neurons. Our results show that the coherence of the network is optimized by an optimal level of stochastic stimulus, which is known as coherence resonance (CR). We also demonstrate that the interplay of calcium conductance and noise intensity can modify the degree of CR.

Download