Do you want to publish a course? Click here

Reduced models of unidirectional flows in compliant rectangular ducts at finite Reynolds number

162   0   0.0 ( 0 )
 Added by Ivan Christov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Soft hydraulics, which addresses the interaction between an internal flow and a compliant conduit, is a central problem in microfluidics. We analyze Newtonian fluid flow in a rectangular duct with a soft top wall at steady state. The resulting fluid--structure interaction (FSI) is formulated for both vanishing and finite flow inertia. At the leading-order in the small aspect ratio, the lubrication approximation implies that the pressure only varies in the streamwise direction. Meanwhile, the compliant walls slenderness makes the fluid--solid interface behave like a Winkler foundation, with the displacement fully determined by the local pressure. Coupling flow and deformation and averaging across the cross-section leads to a one-dimensional reduced model. In the case of vanishing flow inertia, an effective deformed channel height is defined rigorously to eliminate the spanwise dependence of the deformation. It is shown that a previously-used averaged height concept is an acceptable approximation. From the one-dimensional model, a friction factor and the corresponding Poiseuille number are derived. Unlike the rigid duct case, the Poiseuille number for a compliant duct is not constant but varies in the streamwise direction. Compliance can increase the Poiseuille number by a factor of up to four. The model for finite flow inertia is obtained by assuming a parabolic vertical variation of the streamwise velocity. To satisfy the displacement constraints along the edges of the channel, weak tension is introduced in the streamwise direction to regularize the Winkler-foundation-like model. Matched asymptotic solutions of the regularized model are derived.



rate research

Read More

In this study, we use numerical simulations to investigate the flow field induced by a single magnetic microrobot rotating with a constant angular speed about an axis perpendicular to an underlying surface. A parallel solver for steady Stokes flow equations based on the boundary-element method is used for simulating these flows. A simple transformation is introduced to extend the predictive capability of the solver to cases with small unsteadiness. Flows induced by four simple robot shapes are investigated: sphere, upright cylinder, horizontally-laid cylinder, and five-pointed star-shaped prism. Shapes with cross-sections that are axisymmetric about the rotation axis (sphere and upright cylinder) generate time-invariant flow fields, which could be useful for applications such as micromanipulation. Non-axisymmetric shapes (horizontally-laid cylinder and the star-shaped prism) induce significant unsteadiness inside the flow field, which could be desirable for applications such as micromixing. Furthermore, a slender horizontally-laid cylinder generates substantially three-dimensional flows, an added benefit for micromixing applications. The presence of nearby walls such as a bottom substrate or sidewalls has a retarding effect on the induced flows, which is quantified. Finally, we present the driving torque and power-consumption of these microrobots rotating in viscous liquids. The numerical modeling platform used in this work can enable future optimal microrobot designs for a given application requirement.
Microfluidic technologies are commonly used for the manipulation of red blood cell (RBC) suspensions and analyses of flow-mediated biomechanics. To enhance the performance of microfluidic devices, understanding the dynamics of the suspensions processed within is crucial. We report novel aspects of the spatio-temporal dynamics of RBC suspensions flowing through a typical microchannel at low Reynolds number. Through experiments with dilute RBC suspensions, we find an off-centre two-peak (OCTP) profile of cells contrary to the centralised distribution commonly reported for low-inertia flows. This is reminiscent of the well-known tubular pinch effect which arises from inertial effects. However, given the conditions of negligible inertia in our experiments, an alternative explanation is needed for this OCTP profile. Our massively-parallel simulations of RBC flow in real-size microfluidic dimensions using the immersed-boundary-lattice-Boltzmann method (IB-LBM) confirm the experimental findings and elucidate the underlying mechanism for the counterintuitive RBC pattern. By analysing the RBC migration and cell-free layer (CFL) development within a high-aspect-ratio channel, we show that such a distribution is co-determined by the spatial decay of hydrodynamic lift and the global deficiency of cell dispersion in dilute suspensions. We find a CFL development length greater than 46 and 28 hydraulic diameters in the experiment and simulation, respectively, exceeding typical lengths of microfluidic designs. Our work highlights the key role of transient cell distribution in dilute suspensions, which may negatively affect the reliability of experimental results if not taken into account.
A new approach to turbulence simulation, based on a combination of large-eddy simulation (LES) for the whole flow and an array of non-space-filling quasi-direct numerical simulations (QDNS), which sample the response of near-wall turbulence to large-scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse-grid LES, with the equivalent of wall functions supplied by the near-wall sampled QDNS. Two cases are tested, at friction Reynolds number Re$_tau$=4200 and 20,000. The total grid node count for the first case is less than half a million and less than two million for the second case, with the calculations only requiring a desktop computer. A good agreement with published DNS is found at Re$_tau$=4200, both in terms of the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near-wall turbulence levels due to a modulation of near-wall streaks by large-scale structures. The trend continues at Re$_tau$=20,000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES-QDNS coupling strategy and sub-grid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.
The ability to robustly and efficiently control the dynamics of nonlinear systems lies at the heart of many current technological challenges, ranging from drug delivery systems to ensuring flight safety. Most such scenarios are too complex to tackle directly and reduced-order modelling is used in order to create viable representations of the target systems. The simplified setting allows for the development of rigorous control theoretical approaches, but the propagation of their effects back up the hierarchy and into real-world systems remains a significant challenge. Using the canonical setup of a liquid film falling down an inclined plane under the action of active feedback controls in the form of blowing and suction, we develop a multi-level modelling framework containing both analytical models and direct numerical simulations acting as an in silico experimental platform. Constructing strategies at the inexpensive lower levels in the hierarchy, we find that offline control transfer is not viable, however analytically-informed feedback strategies show excellent potential, even far beyond the anticipated range of applicability of the models. The detailed effects of the controls in terms of stability and treatment of nonlinearity are examined in detail in order to gain understanding of the information transfer inside the flows, which can aid transition towards other control-rich frameworks and applications.
Motivated by problems arising in the pneumatic actuation of controllers for micro-electromechanical systems (MEMS), labs-on-a-chip or biomimetic soft robots, and the study of microrheology of both gases and soft solids, we analyze the transient fluid--structure interaction (FSIs) between a viscoelastic tube conveying compressible flow at low Reynolds number. We express the density of the fluid as a linear function of the pressure, and we use the lubrication approximation to further simplify the fluid dynamics problem. On the other hand, the structural mechanics is governed by a modified Donnell shell theory accounting for Kelvin--Voigt-type linearly viscoelastic mechanical response. The fluid and structural mechanics problems are coupled through the tubes radial deformation and the hydrodynamic pressure. For small compressibility numbers and weak coupling, the equations are solved analytically via a perturbation expansion. Three illustrative problems are analyzed. First, we obtain exact (but implicit) solutions for the pressure for steady flow conditions. Second, we solve the transient problem of impulsive pressurization of the tubes inlet. Third, we analyze the transient response to an oscillatory inlet pressure. We show that an oscillatory inlet pressure leads to acoustic streaming in the tube, attributed to the nonlinear pressure gradient induced by the interplay of FSI and compressibility. Furthermore, we demonstrate an enhancement in the volumetric flow rate due to FSI coupling. The hydrodynamic pressure oscillations are shown to exhibit a low-pass frequency response (when averaging over the period of oscillations), while the frequency response of the tube deformation is similar to that of a band-pass filter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا