Do you want to publish a course? Click here

Universal quantum computation and quantum error correction using discrete holonomies

91   0   0.0 ( 0 )
 Added by Erik Sjoqvist
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Holonomic quantum computation exploits a quantum states non-trivial, matrix-valued geometric phase (holonomy) to perform fault-tolerant computation. Holonomies arising from systems where the Hamiltonian traces a continuous path through parameter space have been well-researched. Discrete holonomies, on the other hand, where the state jumps from point to point in state space, have had little prior investigation. Using a sequence of incomplete projective measurements of the spin operator, we build an explicit approach to universal quantum computation. We show that quantum error correction codes integrate naturally in our scheme, providing a model for measurement-based quantum computation that combines the passive error resilience of holonomic quantum computation and active error correction techniques. In the limit of dense measurements we recover known continuous-path holonomies.



rate research

Read More

Quantum information platforms made great progress in the control of many-body entanglement and the implementation of quantum error correction, but it remains a challenge to realize both in the same setup. Here, we propose a mixture of two ultracold atomic species as a platform for universal quantum computation with long-range entangling gates, while providing a natural candidate for quantum error-correction. In this proposed setup, one atomic species realizes localized collective spins of tunable length, which form the fundamental unit of information. The second atomic species yields phononic excitations, which are used to entangle collective spins. Finally, we discuss a finite-dimensional version of the Gottesman-Kitaev-Preskill code to protect quantum information encoded in the collective spins, opening up the possibility to universal fault-tolerant quantum computation in ultracold atom systems.
The standard quantum error correction protocols use projective measurements to extract the error syndromes from the encoded states. We consider the more general scenario of weak measurements, where only partial information about the error syndrome can be extracted from the encoded state. We construct a feedback protocol that probabilistically corrects the error based on the extracted information. Using numerical simulations of one-qubit error correction codes, we show that our error correction succeeds for a range of the weak measurement strength, where (a) the error rate is below the threshold beyond which multiple errors dominate, and (b) the error rate is less than the rate at which weak measurement extracts information. It is also obvious that error correction with too small a measurement strength should be avoided.
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However,it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code.Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large scale cluster states for the topologically protected measurement based quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large scale quantum computation.
The typical model for measurement noise in quantum error correction is to randomly flip the binary measurement outcome. In experiments, measurements yield much richer information - e.g., continuous current values, discrete photon counts - which is then mapped into binary outcomes by discarding some of this information. In this work, we consider methods to incorporate all of this richer information, typically called soft information, into the decoding of quantum error correction codes, and in particular the surface code. We describe how to modify both the Minimum Weight Perfect Matching and Union-Find decoders to leverage soft information, and demonstrate these soft decoders outperform the standard (hard) decoders that can only access the binary measurement outcomes. Moreover, we observe that the soft decoder achieves a threshold 25% higher than any hard decoder for phenomenological noise with Gaussian soft measurement outcomes. We also introduce a soft measurement error model with amplitude damping, in which measurement time leads to a trade-off between measurement resolution and additional disturbance of the qubits. Under this model we observe that the performance of the surface code is very sensitive to the choice of the measurement time - for a distance-19 surface code, a five-fold increase in measurement time can lead to a thousand-fold increase in logical error rate. Moreover, the measurement time that minimizes the physical error rate is distinct from the one that minimizes the logical performance, pointing to the benefits of jointly optimizing the physical and quantum error correction layers.
218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to realize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا