Do you want to publish a course? Click here

On Regularized Square-root Regression Problems: Distributionally Robust Interpretation and Fast Computations

197   0   0.0 ( 0 )
 Added by Yangjing Zhang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Square-root (loss) regularized models have recently become popular in linear regression due to their nice statistical properties. Moreover, some of these models can be interpreted as the distributionally robust optimization counterparts of the traditional least-squares regularized models. In this paper, we give a unified proof to show that any square-root regularized model whose penalty function being the sum of a simple norm and a seminorm can be interpreted as the distributionally robust optimization (DRO) formulation of the corresponding least-squares problem. In particular, the optimal transport cost in the DRO formulation is given by a certain dual form of the penalty. To solve the resulting square-root regularized model whose loss function and penalty function are both nonsmooth, we design a proximal point dual semismooth Newton algorithm and demonstrate its efficiency when the penalty is the sparse group Lasso penalty or the fused Lasso penalty. Extensive experiments demonstrate that our algorithm is highly efficient for solving the square-root sparse group Lasso problems and the square-root fused Lasso problems.



rate research

Read More

Wasserstein distance-based distributionally robust optimization (DRO) has received much attention lately due to its ability to provide a robustness interpretation of various learning models. Moreover, many of the DRO problems that arise in the learning context admits exact convex reformulations and hence can be tackled by off-the-shelf solvers. Nevertheless, the use of such solvers severely limits the applicability of DRO in large-scale learning problems, as they often rely on general purpose interior-point algorithms. On the other hand, there are very few works that attempt to develop fast iterative methods to solve these DRO problems, which typically possess complicated structures. In this paper, we take a first step towards resolving the above difficulty by developing a first-order algorithmic framework for tackling a class of Wasserstein distance-based distributionally robust logistic regression (DRLR) problem. Specifically, we propose a novel linearized proximal ADMM to solve the DRLR problem, whose objective is convex but consists of a smooth term plus two non-separable non-smooth terms. We prove that our method enjoys a sublinear convergence rate. Furthermore, we conduct three different experiments to show its superb performance on both synthetic and real-world datasets. In particular, our method can achieve the same accuracy up to 800+ times faster than the standard off-the-shelf solver.
In this paper, we propose a discretization scheme for the two-stage stochastic linear complementarity problem (LCP) where the underlying random data are continuously distributed. Under some moderate conditions, we derive qualitative and quantitative convergence for the solutions obtained from solving the discretized two-stage stochastic LCP (SLCP). We explain how the discretized two-stage SLCP may be solved by the well-known progressive hedging method (PHM). Moreover, we extend the discussion by considering a two-stage distributionally robust LCP (DRLCP) with moment constraints and proposing a discretization scheme for the DRLCP. As an application, we show how the SLCP and DRLCP models can be used to study equilibrium arising from two-stage duopoly game where each player plans to set up its optimal capacity at present with anticipated competition for production in future.
We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, which can be generalized to sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and machine learning tasks.
Wasserstein textbf{D}istributionally textbf{R}obust textbf{O}ptimization (DRO) is concerned with finding decisions that perform well on data that are drawn from the worst-case probability distribution within a Wasserstein ball centered at a certain nominal distribution. In recent years, it has been shown that various DRO formulations of learning models admit tractable convex reformulations. However, most existing works propose to solve these convex reformulations by general-purpose solvers, which are not well-suited for tackling large-scale problems. In this paper, we focus on a family of Wasserstein distributionally robust support vector machine (DRSVM) problems and propose two novel epigraphical projection-based incremental algorithms to solve them. The updates in each iteration of these algorithms can be computed in a highly efficient manner. Moreover, we show that the DRSVM problems considered in this paper satisfy a Holderian growth condition with explicitly determined growth exponents. Consequently, we are able to establish the convergence rates of the proposed incremental algorithms. Our numerical results indicate that the proposed methods are orders of magnitude faster than the state-of-the-art, and the performance gap grows considerably as the problem size increases.
86 - Fan Wu , Wei Bian , Xiaoping Xue 2021
We investigate a class of constrained sparse regression problem with cardinality penalty, where the feasible set is defined by box constraint, and the loss function is convex, but not necessarily smooth. First, we put forward a smoothing fast iterative hard thresholding (SFIHT) algorithm for solving such optimization problems, which combines smoothing approximations, extrapolation techniques and iterative hard thresholding methods. The extrapolation coefficients can be chosen to satisfy $sup_k beta_k=1$ in the proposed algorithm. We discuss the convergence behavior of the algorithm with different extrapolation coefficients, and give sufficient conditions to ensure that any accumulation point of the iterates is a local minimizer of the original cardinality penalized problem. In particular, for a class of fixed extrapolation coefficients, we discuss several different update rules of the smoothing parameter and obtain the convergence rate of $O(ln k/k)$ on the loss and objective function values. Second, we consider the case in which the loss function is Lipschitz continuously differentiable, and develop a fast iterative hard thresholding (FIHT) algorithm to solve it. We prove that the iterates of FIHT converge to a local minimizer of the problem that satisfies a desirable lower bound property. Moreover, we show that the convergence rate of loss and objective function values are $o(k^{-2})$. Finally, some numerical examples are presented to illustrate the theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا