Do you want to publish a course? Click here

Tactile Image-to-Image Disentanglement of Contact Geometry from Motion-Induced Shear

89   0   0.0 ( 0 )
 Added by Anupam Kumar Gupta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Robotic touch, particularly when using soft optical tactile sensors, suffers from distortion caused by motion-dependent shear. The manner in which the sensor contacts a stimulus is entangled with the tactile information about the geometry of the stimulus. In this work, we propose a supervised convolutional deep neural network model that learns to disentangle, in the latent space, the components of sensor deformations caused by contact geometry from those due to sliding-induced shear. The approach is validated by reconstructing unsheared tactile images from sheared images and showing they match unsheared tactile images collected with no sliding motion. In addition, the unsheared tactile images give a faithful reconstruction of the contact geometry that is not possible from the sheared data, and robust estimation of the contact pose that can be used for servo control sliding around various 2D shapes. Finally, the contact geometry reconstruction in conjunction with servo control sliding were used for faithful full object reconstruction of various 2D shapes. The methods have broad applicability to deep learning models for robots with a shear-sensitive sense of touch.



rate research

Read More

Simulation has recently become key for deep reinforcement learning to safely and efficiently acquire general and complex control policies from visual and proprioceptive inputs. Tactile information is not usually considered despite its direct relation to environment interaction. In this work, we present a suite of simulated environments tailored towards tactile robotics and reinforcement learning. A simple and fast method of simulating optical tactile sensors is provided, where high-resolution contact geometry is represented as depth images. Proximal Policy Optimisation (PPO) is used to learn successful policies across all considered tasks. A data-driven approach enables translation of the current state of a real tactile sensor to corresponding simulated depth images. This policy is implemented within a real-time control loop on a physical robot to demonstrate zero-shot sim-to-real policy transfer on several physically-interactive tasks requiring a sense of touch.
This paper addresses the localization of contacts of an unknown grasped rigid object with its environment, i.e., extrinsic to the robot. We explore the key role that distributed tactile sensing plays in localizing contacts external to the robot, in contrast to the role that aggregated force/torque measurements play in localizing contacts on the robot. When in contact with the environment, an object will move in accordance with the kinematic and possibly frictional constraints imposed by that contact. Small motions of the object, which are observable with tactile sensors, indirectly encode those constraints and the geometry that defines them. We formulate the extrinsic contact sensing problem as a constraint-based estimation. The estimation is subject to the kinematic constraints imposed by the tactile measurements of object motion, as well as the kinematic (e.g., non-penetration) and possibly frictional (e.g., sticking) constraints imposed by rigid-body mechanics. We validate the approach in simulation and with real experiments on the case studies of fixed point and line contacts. This paper discusses the theoretical basis for the value of distributed tactile sensing in contrast to aggregated force/torque measurements. It also provides an estimation framework for localizing environmental contacts with potential impact in contact-rich manipulation scenarios such as assembling or packing.
Recently, image-to-image translation has made significant progress in achieving both multi-label (ie, translation conditioned on different labels) and multi-style (ie, generation with diverse styles) tasks. However, due to the unexplored independence and exclusiveness in the labels, existing endeavors are defeated by involving uncontrolled manipulations to the translation results. In this paper, we propose Hierarchical Style Disentanglement (HiSD) to address this issue. Specifically, we organize the labels into a hierarchical tree structure, in which independent tags, exclusive attributes, and disentangled styles are allocated from top to bottom. Correspondingly, a new translation process is designed to adapt the above structure, in which the styles are identified for controllable translations. Both qualitative and quantitative results on the CelebA-HQ dataset verify the ability of the proposed HiSD. We hope our method will serve as a solid baseline and provide fresh insights with the hierarchically organized annotations for future research in image-to-image translation. The code has been released at https://github.com/imlixinyang/HiSD.
There are a wide range of features that tactile contact provides, each with different aspects of information that can be used for object grasping, manipulation, and perception. In this paper inference of some key tactile features, tip displacement, contact location, shear direction and magnitude, is demonstrated by introducing a novel method of transducing a third dimension to the sensor data via Voronoi tessellation. The inferred features are displayed throughout the work in a new visualisation mode derived from the Voronoi tessellation; these visualisations create easier interpretation of data from an optical tactile sensor that measures local shear from displacement of internal pins (the TacTip). The output values of tip displacement and shear magnitude are calibrated to appropriate mechanical units and validate the direction of shear inferred from the sensor. We show that these methods can infer the direction of shear to $sim$2.3$^{circ}$ without the need for training a classifier or regressor. The approach demonstrated here will increase the versatility and generality of the sensors and thus allow sensor to be used in more unstructured and unknown environments, as well as improve the use of these tactile sensors in more complex systems such as robot hands.
Recent advances of image-to-image translation focus on learning the one-to-many mapping from two aspects: multi-modal translation and multi-domain translation. However, the existing methods only consider one of the two perspectives, which makes them unable to solve each others problem. To address this issue, we propose a novel unified model, which bridges these two objectives. First, we disentangle the input images into the latent representations by an encoder-decoder architecture with a conditional adversarial training in the feature space. Then, we encourage the generator to learn multi-mappings by a random cross-domain translation. As a result, we can manipulate different parts of the latent representations to perform multi-modal and multi-domain translations simultaneously. Experiments demonstrate that our method outperforms state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا