Phonon Stability of Quantum Droplets in a dipolar Bose gases


Abstract in English

Stabilized by quantum fluctuations, dipolar Bose-Einstein condensates can form self-bound liquidlike droplets in the mean-field unstable regime. However in the Bogoliubov theory, some phonon energies are imaginary in the long-wavelength limit, implying dynamical instability of this system. A similar instability appears in the Bogoliubov theory of a binary quantum droplet, and is removed due to higher-order quantum fluctuations as shown recently [1]. In this work, we study the phonon energy of a dipolar quantum droplet in the Beliaev formalism, and find that quantum fluctuations can enhance the phonon stability. We obtain the anisotropic sound velocity which can be tested in experiment.

Download